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Abstract

This paper studies localic products, traditional topological products, and L-topological products, and gives a com-

plete outline of the localic product. Comparisons of localic and L-topological products are absent in the literature,

and this paper answers longstanding open questions in that area as well as provides a complete proof of the classical

comparison theorem for localic and traditional topological products. This paper contributes several L-valued compar-

ison theorems, one of which states: the localic and L-topological products of L-topologies are order isomorphic if and

only if the localic product is L-spatial, providing L is itself spatial and the family of L-topological spaces is “prime

separated”. These last two conditions always hold in the traditional setting, capturing the traditional comparison

theorem as a special case, and the prime separation condition is satisfied by important lattice-valued examples that

include the fuzzy real line and the fuzzy unit interval for L any complete Boolean algebra, and the alternative fuzzy

real line and fuzzy unit interval for L any (semi)frame. Separation conditions help control the “sloppy” behavior

of the L-topological product when |L| > 2, and several separation conditions are studied in this context; and it

should be noted that localic products have a point-free version of the “product” separation condition considered in

this paper. The traditional comparison theorem is carefully proved both to fill gaps in the extant literature and to

motivate the L-valued comparison theorem quoted above and reveal the special role played by cross sums of prime

(L-)open subsets. En route, characterizations are given of prime L-open subsets of certain L-products, which in turn

yield characterizations of prime open and irreducible closed subsets of traditional product spaces.

Keywords: Localic/topological products; cross products/sums of L-open subsets; frame/meetsemilattice coproducts;

frame/meetsemilattice quotients; L-spatiality; L-spectra; prime L-open sets; normalized/conormalized/hypernormalized

L-topological spaces; product/sum/join/prime/projection separated families of L-topological spaces.

1 Introduction and Extended Overview

Products play a crucial role in point-set topology and increasingly a correspondingly crucial role in point-set
lattice-theoretic (poslat) topology. In 1976, Dowker & Papert [2] constructed the coproduct of frames, a deep
construction which, based on the notion of a frame, furnishes the product for point-free or localic topology, a
product packaged by Johnstone [9] in 1982 using sites and coverages, and then repackaged recently and quite
accessibly by Pultr [13] using quotients of frames by binary relations. Other important papers include [?] and
[12], in the latter of which localic products play a special role in topological games and the product of strongly
Baire topological spaces. It should be mentioned that localic products are critical to the completeness of
the category TopSys of topological systems [28] important in semantic domains and to the completeness of
the category Loc-Top of variable-basis topological spaces [18, 19, 23] important in fuzzy sets and to which
TopSys is fundamentally related [1, 27].

Unless stated otherwise, L in the sequel is a frame.
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1.1 Question. The fundamental question is the following: how does the notion of localic product compare
with corresponding notions for traditional and lattice-valued topology? This question can take various forms,
in each of which the localic product is denoted by

⊕
and the product topology by

⊗
:

1. Given a family {(Xγ , Tγ) : γ ∈ Γ} ⊂ |Top|, the corresponding product space
(∏

γ∈Γ Xγ ,
⊗

γ∈Γ Tγ

)
,

and the localic product
⊕

γ∈Γ Tγ , how do
⊗

γ∈Γ Tγ and
⊕

γ∈Γ Tγ compare as frames; e.g., are they
necessarily order-isomorphic? See [2, 9]

2. Given a family {(Xγ , τγ) : γ ∈ Γ} ⊂ |L-Top|, the corresponding L-topological product space(∏
γ∈Γ Xγ ,

⊗
γ∈Γ τγ

)
, and the localic product

⊕
γ∈Γ τγ , how do

⊗
γ∈Γ τγ and

⊕
γ∈Γ τγ compare as

frames; e.g., are they necessarily order-isomorphic? See [18, 19, 21].

3. Given a family {(Xγ , Lγ , τγ) : γ ∈ Γ} ⊂ |Loc-Top| [23], the corresponding product space(∏
γ∈Γ Xγ ,

⊕
γ∈Γ Lγ ,

⊗
γ∈Γ τγ

)
, and the localic product

⊕
γ∈Γ τγ , how do

⊗
γ∈Γ τγ and

⊕
γ∈Γ τγ com-

pare as frames; e.g., are they necessarily order-isomorphic?

Question 1.1(1, 2) concerns fixed-basis topology and is the primary focus of this paper, while Question
1(3) concerns a form of variable-basis topology and is the subject of future work, as is also the investigation
of these product questions when the underlying lattices of membership values are allowed to be quantales or
other extensions of frames. We note that preliminary discussions on Question 1(2) are given in [18, 19, 21]
and the present work may be viewed as a long overdue, extensive update and expansion of those discussions.

1.2 Theorem (comparison of localic and traditional topological products).
⊕

γ∈Γ Tγ
∼= ⊗

γ∈Γ Tγ

if and only if
⊕

γ∈Γ Tγ is spatial.

1.3 Proposal (comparison of localic and L-topological products).
⊕

γ∈Γ τγ
∼= ⊗

γ∈Γ τγ if and only
if

⊕
γ∈Γ τγ is L-spatial.

The statement of Theorem 1.2 appears in [2] essentially without proof. Its proof is decidedly nontrivial
(in fact, rather deep) and there are only very partial proofs in the literature. This paper gives complete
proofs (more than one) of Theorem 1.2 (Subsections 7.3, 7.4). Proposal 1.3 is stated in essentially this form
in [18]; and it is not known whether Proposal 1.3 in full generality is true, though necessity is always true:

1.4 Theorem [18, 19, 21]. Necessity in Proposal 1.3 always holds.

The following alternative to Proposal 1.3 is proved in Section 4.

1.5 Theorem.
⊕

γ∈Γ τγ
∼= ⊗

γ∈Γ (ΦL)→ (τγ) if and only if
⊕

γ∈Γ τγ is L-spatial (where (ΦL)→ (τγ) is the
L-topology for the L-spectrum τγ—see Section 4 below). More generally, ∀M a subframe of L such that L
is M -spatial,

⊕
γ∈Γ τγ

∼= ⊗
γ∈Γ (ΦM )→ (τγ) if and only if

⊕
γ∈Γ τγ is L-spatial, where

⊗
γ∈Γ (ΦM )→ (τγ) is

the L-topological product (in L-Top).

Sufficiency in Proposal 1.3 is true—Proposal 1.3 then becomes a theorem—under the antecedents of the
next five theorems contributed by Sections 7, 8, and 9 of this paper. The first of these theorems includes
Theorem 1.2 for L = 2 if the spaces in the latter are sober (and so, in particular, if they are Hausdorff) and
generalizes the theorem proved in Paragraph II.2.13 of [9]; and the second theorem significantly generalizes
the first by weakening the condition of L-sobriety. In the third and fifth theorems, Proposal 1.3 becomes
a theorem under conditions each of which captures Theorem 1.2 when L = 2; and the fourth theorem is
intermediate between the second and third theorems in its antecedent.

1.6 Theorem (cf. [18]). Let {(Xγ , τγ) : γ ∈ Γ} be a family of L-sober topological spaces (Definition 4.1
below). Then (sufficiency in) Proposal 1.3 holds.

1.6.1 Theorem (cf. [18]). Let {(Xγ , τγ) : γ ∈ Γ} be a family of L-S0 topological spaces (Definition 4.1
below). Then (sufficiency in) Proposal 1.3 holds.



Localic and Topological Products 3

1.7 Theorem. Let L be spatial and {(Xγ , τγ) : γ ∈ Γ} be a prime separated family of L-topological spaces
(AC if Γ nonfinite). Then (sufficiency in) Proposal 1.3 holds.

1.7.1 Theorem (cf. [18]). Let {(Xγ , τγ) : γ ∈ Γ} be a normalized and prime separated family of q-L-S0

topological spaces (AC if Γ nonfinite). Then (sufficiency in) Proposal 1.3 holds.

1.8 Theorem. If {(Xγ , τγ) : γ ∈ Γ} is a join separated and product separated family of L-topological
spaces, then (sufficiency in) Proposal 1.3 holds.

1.8.1 Remark. The properties of “product separation”, “prime separation”, “normalized” are technical
conditions which always hold for traditional spaces. In the case of two traditional spaces (X, T) , (Y, S), the
first two conditions are the properties, respectively, that if A×B 6= ∅, then

A×B ⊂ C ×D ⇔ A ⊂ C and B ⊂ D,

A×B ⊂ C + D ⇔ A ⊂ C or B ⊂ D,

where
C + D = (C × Y ) ∪ (X ×D) .

And “normalized” is the property that for each nonempty open subset U, say of (X, T) , it is the case that

||χU || ≡
∨

x∈X

χU (x) = >.

The fuzzy analogues of the separation properties (see Section 5 below) do not generally hold for product
L-powersets—products and sums of L-subsets are “messy” when |L| ≥ 3, the factors and terms “spilling”
into each other. But there are many important L-topological spaces which form families whose product
L-powersets satisfy these properties: the fuzzy real lines and fuzzy unit intervals for L any complete Boolean
algebra; the alternative fuzzy real lines and fuzzy unit intervals for L any semiframe; the L-soberifications
of any 2-topological spaces for any L a semiframe; and many other spaces. The motivation for the “join
separation condition” assumed in 1.8 is more subtle and given in Section 9.

A weaker result than sufficiency in Proposal 1.3 is given by our last theorem:

1.9 Theorem. If
⊕

γ∈Γ τγ is L-spatial, then
⊗

γ∈Γ τγ is a sublocale of
⊕

γ∈Γ τγ .

1.10 Organization of Paper. The rest of this paper is organized as follows: Section 2 gives needed
notation and summarizes products in Top and L-Top; Section 3 gives a needed, detailed summary of the
construction of products in Loc based on the elegant approach of [13]; notions of points and the LΩ a LPT
adjunction, important tools in this paper, are catalogued and used in Section 4 to prove Theorems 1.4,
1.5, 1.6; various separation conditions concerning products in L-Top and their relationships to powerset
operators are developed in Section 5, including the crucial prime separation condition; Section 6 sets up
Sections 7, 8, 9 and proves Theorem 1.6.1; Theorem 1.7 and Theorem 1.2 are proved in Section 7, providing
a proof of Theorem 1.2 that is without gaps as well as characterizations of prime L-open subsets of certain
L-topological product spaces and characterizations of prime open and irreducible closed subsets of traditional
product spaces; Theorem 1.7.1 is proved in Section 8; and Theorems 1.8 and 1.9 are proved in Section 9.

2 Preliminary notions

2.1 Frames

Unless stated otherwise, L is a frame, that is, a complete lattice satisfying the first infinite distributive law
or, equivalently, equipped with the Heyting implication operation →, the latter defined by saying that

∀a, b, c ∈ L, a → b ≥ c ⇔ a ∧ c ≤ b.

The inconsistent frame 1 (with ⊥ = >) is allowed; and the crisp frame 2 = {⊥,>} . The notion of coframe
is dual to that of frame, namely, a complete lattice satisfying the second infinite distribute law; alternatively,
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it is the dual lattice of a frame. And a diframe is both a frame and a coframe, i.e., a complete lattice which
is weakly completely distributive—the regular open subsets of R comprise a diframe which is not completely
distributive; and we note that some workers (but not all) use biframe for such a structure.

The category Frm comprises all frames along with all mappings between frames which preserve arbitrary∨
and finite ∧, along with the composition and identities of Set. The dual or opposite category Frmop is

denoted Loc, and in the latter the objects are also called locales.

2.2 Powersets and powerset operators

Given a function f : X → Y, the traditional and Zadeh L-valued (upper) image and preimage and lower
image operators are defined respectively as follows:

f→ : ℘ (X) → ℘ (Y ) by f→ (A) = {f (y) ∈ Y : x ∈ A} ,

f← : ℘ (X) ← ℘ (Y ) by f← (B) = {x ∈ X : f (x) ∈ B} ,

f→ : ℘ (X) → ℘ (Y ) by f→ (A) = {y ∈ Y : f← {y} ⊂ A} ,

f→L : LX → LY by f→L (a) (y) =
∨

x∈ f←{y}
a (x) ,

f←L : LX ← LY by f←L (b) = b ◦ f,

fL→ : LX → LY by fL→ (a) (y) =
∧

x∈ f←{y}
a (x) .

Note that L is often dropped from the notation when L is understood from the context. It is well-known
that

f→ a f← a f→, f→L a f←L a fL→

and that the Zadeh operators are, respectively, the extensions of the traditional operators; e.g., f→2 (χA) =
χf→(A).

2.2.1 Proposition. Let f : X → Y be a function.

1. f→ and f→L preserve arbitrary joins, f← and f←L preserve both arbitrary joins and arbitrary meets,
and fL→ and f→ preserve arbitrary meets.

2. The following are equivalent: f is bijective; f→L is bijective and (f→L )−1 = f←L =
(
f−1

)→
L

; f←L is
bijective and (f←L )−1 = f→L =

(
f−1

)←
L

; and f→L = fL→ .

3. Let f be injective. Then ∀a ∈ LX , ∀ {aγ}γ∈Γ ⊂ LX , ∀y ∈ Y , the following hold:

f→L (a) (y) =
{ ⊥, y /∈ f→ (X)

a (x) , ∃ ! x ∈ X, y = f (x) ,

(
f→L (a)| f→(X)

)
(y) = a (x) , where y = f (x) ,

f→L


 ∧

γ∈Γ

aγ


 =

∧

γ∈Γ

f→L (aγ) .

2.2.2 Definition (cf. [26]). Let X be a set and a ∈ LX . Then the norm ||a|| and conorm ||a||co of a ∈ LX

are respectively given by
||a|| =

∨

x∈X

a (x) , ||a||co =
∧

x∈X

a (x) ;

and a is normalized [conormalized ] if ||a|| = > [||a||co = ⊥, respectively]. Further, a family A ⊂ LX of
L-subsets is:

1. normalized if each a ∈ A− {⊥} is normalized;

2. conormalized if each a ∈ A− {>} is conormalized;

3. binormalized if it is both normalized and conormalized;
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4. hypernormalized if ∀a, b ∈ A with a � b, ∃x ∈ X, a (x) = >, b (x) = ⊥.

2.2.3 Proposition. Binormalized ⇒ each of normalized and conormalized; if A includes {⊥,>} , then all
of these conditions are consequences of hypernormalized; and none of these implications reverses.
Proof. Suppose A includes {⊥,>} and let a ∈ A ∈ {⊥} be given. Assume A is hypernormalized and
choose b = ⊥. Then a � b. So ∃x ∈ X, a (x) = >, b (x) = ⊥; and in particular, we have ||a|| = >. Hence
hypernormalized implies normalized, and the proof that hypernormalized implies conormalized is dual. All
the other assertions are trivial. 2

2.2.4 Proposition.

1. The Zadeh upper [lower] image of a normalized [co-normalized] L-subset is normalized [co-normalized].

2. If a ground mapping f is injective and A is a hypernormalized family on the domain, then both
(f→L )→ (A) and (fL→)→ (A) are hypernormalized.

3. If a ground mapping f is surjective and A is a hypernormalized family on the codomain, then (f←L )→ (A)
is hypernormalized.

For more details on the powerset monads for L-valued sets, see [25] and its references.

2.3 Subframes and sublocales

A is a subframe of frame B if A ⊂ B and A is closed in B under arbitrary
∨

and finite ∧.
For frame A, the mapping ν : A → A is a nucleus if ∀a, b ∈ A the following hold::

(N1) a ≤ ν(a) (ν enlarges);

(N2) ν (ν (a)) ≤ ν (a) (ν fixes outputs: ν (ν (a)) = ν (a));

(N3) ν (a ∧ b) = ν (a) ∧ ν (b) (ν preserves binary meets).

S is a sublocale of locale A if S ⊂ A and ∃ a nucleus ν : A → A with ν→ (A) = S. It is equivalent to say
that S is the image of A under some frame morphism; and it is also equivalent to say that S satisfies:

(S1) S is closed in A under arbitrary
∧

, and

(S2) S is closed in A “under consequents”, i.e., ∀a ∈ A, ∀b ∈ S, a → b ∈ S.

If ν : A → A is a nucleus, we sometimes abuse the terminology and also speak of ν : A → ν→ (A) as a
nucleus.

2.4 Topological notions

The category L-Top comprises all L-topological spaces—ordered pairs (X, τ) with X a set and τ a subframe of
LX , along with L-continuous mappings between them— f : (X, τ) → (Y, σ) with f : X → Y satisfying ∀v ∈
σ, f←L (v) ∈ τ . The category Top of ordinary topological spaces and continuous maps between them is
functorially isomorphic to 2-Top (L-Top with L = 2) via the characteristic functor Gχ defined by

Gχ (X, T) = (X, Gχ (T)) , Gχ (T) = {χU : U ∈ T} , Gχ (f) = f.

Recall that for A a subset of X and (X, T) a topological space, TA ≡ {U ∩ A : U ∈ T}) is the subspace
topology on A; and for (X, τ) and L-topological space, τA ≡

{
u|A : u ∈ τ

}
is the L-subspace topology on A.

Also, if S is a subbasis for (X, T) , we write T = 〈〈S〉〉; σ is a subbasis [basis] for (X, τ) means that

τ =
⋂
{τ̂ : (X, τ) ∈ |L-Top| and σ ⊂ τ̂}

[τ =
{∨

B : B ⊂ σ
}

],

in which case we write τ = 〈〈σ〉〉 [τ = 〈B〉].

2.4.1 Definition. Let (X, τ) , (Y, σ) ∈ |L-Top| and f : X → Y be a mapping.
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1. f is L-subbasic continuous if σ = 〈〈ω〉〉 and ∀v ∈ ω, f←L (v) ∈ τ .

2. f is L-open if ∀u ∈ τ, f→L (u) ∈ σ; and f is relatively L-open if ∀u ∈ τ, f→L (u) ∈ σf→(X). If τ = 〈〈ω〉〉,
then the modifier “subbasic” is used if u in the preceding sentence is restricted to being in ω.

3. f is an L-embedding if f is a injection which is L-continuous and relatively L-open; and f is an
L-homeomorphism if f is a bijection which is L-continuous and whose inverse is L-continuous.

Note that an L-embedding is an L-homeomorphism onto the L-subspace of the image, and an L-
homeomorphism is a surjective L-embedding.

2.4.2 Lemma. Let (X, τ) , (Y, σ) ∈ |L-Top| and f : X → Y be a mapping.

1. f is L-continuous ⇔ f is L-subbasic continuous.

2. If f is injective, then f is relatively L-open ⇔ f is relatively L-subbasic open.

3. If f is an L-homeomorphism, then τ ∼= σ as frames.

4. If f is an L-embedding, then τ is a sublocale of σ.

Proof. (1) is well-known (e.g., [23]) and (2) is straightforward. Concerning (3), since f : X → Y is bijective,
then f→L : LX → LY is a bijection by 2.2.1. Further, L-continuity and L-openness insure that f→L : τ → σ is
bijective. It suffices to invoke that f→L preserves joins to conclude that f→L : τ → σ is a frame isomorphism.
As for (4), assume f : (X, τ) → (Y, σ) is an L-embedding, so that f : (X, τ) → (

f→ (X) , σf→(X)

)
is an

L-homeomorphism. By (3),
(f←L )|σf→(X)

: τ ← σf→(X)

is a frame isomorphism and hence a surjection. Now let u ∈ τ . Then there is v̂ ∈ σf→(X), f←L (v̂) = u; and
there is v ∈ σ, v̂ = v| f→(X). Hence for x ∈ X,

f←L (v) (x) = v (f (x)) = v| f→(X) (f (x)) = v̂ (f (x)) = f←L (v̂) (x) = u (x) ,

and therefore (f←L )|σ : τ ← σ is a surjective frame morphism. Therefore, τ is a sublocale of σ by 2.3
abaove. 2

2.4.3 Definition (topological products). The family {(Xγ , Tγ) : γ ∈ Γ} ⊂ |Top| has the categorical
product in Top given by





 ∏

γ ∈Γ

Xγ ,
⊗

γ ∈Γ

τγ


 , {πγ}γ ∈Γ


 ,

where
(∏

γ ∈Γ
Xγ , {πγ}γ ∈Γ

)
is the categorical product in Set and

⊗

γ ∈Γ

Tγ =
〈〈{

π←γ (V ) : γ ∈ Γ, V ∈ Tγ

}〉〉
;

and, similarly, {(Xγ , τγ) : γ ∈ Γ} ⊂ |L-Top| has the categorical product in L-Top given by




 ∏

γ ∈Γ

Xγ ,
⊗

γ ∈Γ

τγ


 , {πγ}γ ∈Γ


 ,

where ⊗

γ ∈Γ

τγ =
〈〈{

π←γ (V ) : γ ∈ Γ, V ∈ τγ

}〉〉
.

In both cases, double rhombic brackets indicate a subbasis as defined above.
Because of the infinite distributive law, the product topology and product L-topology can respectively be

generated from these subbases via bases in the usual way. In this context we now define the “cross product”
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and “cross sum” of L-subsets. Given two traditional sets X, Y and A ∈ ℘ (X) , B ∈ ℘ (Y ), it is the case that
the cross product A×B and cross sum A + B have the following reformulations using the projections:

A×B = π←1 (A) ∩ π←2 (B) , A + B = π←1 (A) ∪ π←2 (B) .

By analogy, for a ∈ LX , b ∈ LY , we define (suppressing the L),

a £ b = π←1 (a) ∧ π←2 (b) , a ¢ b = π←1 (a) ∨ π←2 (b) .

This is equivalent to saying that a £ b, a ¢ b : X × Y → L by ∀ (x, y) ∈ X × Y,

(a £ b) (x, y) = a (x) ∧ b (y) , (a ¢ b) (x, y) = a (x) ∨ b (y) .

This leads to the following definition:

2.4.4 Definition (cross products and cross sums of L-subsets). Let {Xγ : γ ∈ Γ} be a family of
sets, let B ⊂ Γ, and let {aβ : β ∈ B} be a family of L-subsets such that aβ ∈ LXβ . The (L-) cross product
£β∈Baβ :

∏
γ∈Γ Xγ → L is defined by

(£β∈Baβ) 〈xγ〉γ∈Γ =
∧

β∈B

aβ (xβ) ,

and the dual (L-) cross sum ¢β∈Baβ :
∏

γ∈Γ Xγ → L is defined by

(¢β∈Baβ) 〈xγ〉γ∈Γ =
∨

γ∈B

aβ (xβ) .

Both the cross product and cross sum are used in this paper, and it is important to note that the cross
product is intimately related to the upper image operators of the projections and the cross sum is (dually)
intimately related to the lower image operators of the projections—see Section 5. For now, we note finite
cross products comprise the standard basis of the L-product topology (assuming L is a frame).

2.4.5 Proposition. It holds that
⊗

γ∈Γ

τγ = 〈{£n
i=1uγi : n ∈ N, γi ∈ Γ, uγi ∈ τγi}〉 ,

where the single rhombic brackets indicate{£n
i=1uγi : n ∈ N, γi ∈ Γ, uγi ∈ τγi} is a basis for

⊗
γ∈Γ τγ .

Both the usual projections and generalized projections are needed in the latter sections of the paper, the
latter defined by the following:

2.4.3 Definition (generalized projections). Given a product set
∏

γ∈Γ Xγ , the family
{

πQ
λ∈Λ Xλ

: Λ ⊂ Γ
}

of (generalized) projections is given by

πQ
λ∈Λ Xλ

〈xγ〉γ∈Γ = 〈xλ〉λ∈Λ .

If Λ is the singleton {β} , then we recover the usual projection πβ :
∏

γ∈Γ Xγ → Xβ .

3 Products in Loc

Based on the elegant approach of [13], this section gives a complete, detailed outline of the construction of
localic products needed in subsequent sections and en route fills a small gap of [13] by inserting Step 2 (3.5
below) into this construction—see Discussion 3.8 below.

We first note that the construction of Loc products is equivalent to the construction of concrete Frm
coproducts. Beginning with the definition of coproducts in a category, we outline two fundamental tools
needed in the construction of Frm coproducts and then give this construction in four steps.

3.1 Definition (coproducts in a category). Let {Aγ}γ∈Γ be a collection of objects in a category C.
Then

(⊕
γ∈Γ Aγ , {ιγ}γsΓ

)
is the coproduct of {Aγ}γ∈Γ in C if the following hold:
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1.
⊕

γ∈Γ Aγ ∈ |C| , and β ∈ Γ, ιβ : Aβ →
⊕

γ∈Γ Aγ is a C morphism.

2. ∀
(
B, {κγ}γ∈Γ

)
satisfying (1), ∃ ! h :

⊕
γ∈Γ Aγ → B, ∀β ∈ Γ, κβ = h ◦ ιβ .

3.2 Tool 1 (downset functor [13]). Let SLat⊥ (∧) be the category of all meet semilattices with ⊥ together
with all mappings preserving finite ∧ and ⊥, along with the usual composition and identity morphisms. Note
that Frm includes into SLat⊥ (∧), which inclusion is denoted ↪→ : Frm → SLat⊥ (∧). Now ↪→ has a left-
adjoint D, called the downset functor, whose construction we need. Put D : Frm ← SLat⊥ (∧) as follows:

D (S) = {↓A : ∅ 6= A ⊂ S} ,

where
↓A =

⋃

a∈A

↓(a) and ↓(a) = {x ∈ S : x ≤ a}

and
D (f : S → T ) : D (S) → D (T ) by D (f) (↓A) = ↓f→ (↓A) .

3.2.1 Downset Functor Theorem [13]. The following hold:

1. D (S) is a frame with bottom element {⊥} and top element S.

2. D (f) is a frame morphism and D is a functor.

3. D a ↪→ with unit ηS : S → D (S) in SLat⊥ (∧) given by ηS (a) = ↓(a). For each SLat⊥ (∧) morphism
f : S → C with C a frame, the unique factoring map f : D (S) → C satisfying

f = f ◦ ηS

is given by
f (B) =

∨

b∈B

f (b) .

4. The unit ηS order-embeds S as a generating set of D (S). More precisely:

(a) ηS is an order-isomorphism from S to η→S (S) .

(b) Each member of D (S) is a union of principal ideals from η→S (S) , written D (S) = 〈η→S (S)〉.

5. The unit ηS is epimorphic with respect to composition with frame maps following ηS in the following
sense: given frame maps f, g : D (S) ⇒ B with f ◦ ηS = g ◦ ηS , it is the case that f = g.

We note that the proof of 3.2.1 requires the bottom element for the meet semilattices in questions and
its preservation, i.e., that we start with the category SLat⊥ (∧) and not with the category SLat (∧)—the
category of all meet semilattices together with all mappings preserving finite ∧. This is related to the
insertion of Step 2 below into the construction of [13]; we also note that 3.2.1(5) is critical to verifying the
couniversal property for the injections of the Frm coproduct at the conclusion of Step 4 (3.7) below; and
see Discussion 3.8.

3.3 Tool 2 (quotient frames from binary relations [13]). Let A be a frame with implication operator
→, and let R ⊂ A×A be any binary operation on A. An element s ∈ A is (R-) saturated if

∀a, b, c ∈ A, a R b ⇒ (a ∧ c ≤ s ⇔ b ∧ c ≤ s) .

The concept of saturated elements is intimately linked to the Heyting implication on A, and this implication
and its properties are critical to the proofs of what follows. Put

A/R ≡ {s ∈ A : s is saturated} .

Then A /R is closed under arbitrary
∧

of A; and A/ R is a frame (but need not be a subframe of A), called
the quotient frame of A (by R). Now put

νR : A → A/ R
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by
νR (a) =

∧
{s ∈ A/ R : a ≤ s} .

If the relation R is understood, we may suppress the subscript.

3.3.1 Frame Quotient Theorem [13]. The following hold:

1. νR : A → A/R ⊂ A is a nucleus, in fact an extremal epimorphism in Frm, and A /R is a sublocale of
A.

2. ∀a, b ∈ A, a R b ⇒ νR (a) = νR (b) .

3. ∀h : A → B in Frm satisfying (∀a, b ∈ A, a R b ⇒ h (a) = h (b)) , ∃ ! h : A/ R → B,

h ◦ ν = h.

4. ∀s ∈ A /R, h (s) = h (s).

It should be noted that the relation R defined by aR b ⇔ b = ¬¬ a, where ¬ a = a → ⊥, may be put
on any frame A; the resulting quotient A/ R is a complete Boolean algebra, called the Booleanization BA

of A; and each complete Boolean algebra arises in this way.
Given {Aγ : γ ∈ Γ} ⊂ |Frm|, we are now in a position to construct its frame coproduct in four main

steps. The main intuition is that we try to construct the traditional product topology without using any
underlying carrier sets, that is, using only the topologies themselves. This is done by first imitating the
construction of the basis of the product topology, and then trying to close up that basis with respect to
arbitrary joins (or unions). The first two steps of the following construction are analogous to constructing
the basis of the traditional product topology, while the last two steps focus on the much deeper question of
closing up the “basis” with respect to arbitrary joins.

3.4 Step 1: Coproduct of {Aγ}γ ∈Γ in SLat(∧). Form the object
∏

γ∈Γ Aγ of the product frame
(constructed using the point-wise order)—we do not use the projections associated with this product, only
the object. Now in SLat(∧)—the category of meet semilattices with finite meet preserving mappings—make
the following constructions:

∐

γ∈Γ

Aγ =
{
〈aγ〉γ∈Γ : aγ = >γ for all but finitely many γ

}
∪

{
〈⊥γ〉γ∈Γ

}
,

ϕβ : Aβ →
∐

γ∈Γ

Aγ by (ϕβ (a))γ =
{

a, β = γ
>γ , β 6= γ

.

3.4.1 Theorem. The following hold:

1.
∐

γ∈Γ Aγ with the relative order is sub-meet-semilattice of
∏

γ∈Γ Aγ .

2.
(∐

γ∈Γ Aγ , {ϕγ}γ∈Γ

)
is the coproduct of {Aγ : γ ∈ Γ} in SLat(∧).

3.4.2 Corollary. {ϕγ}γ∈Γ is collection-wise epimorphic (or an epi-sink) in SLat(∧).

Corollary 3.4.2 is crucial to the verification of the Frm coproduct being constructed, in particular, the
couniversal character of the injections of the Frm coproduct in Step 4 (3.7) below.

At this point of the construction, we already note a significant discrepancy between
∐

γ∈Γ Aγ and the
basis of the traditional product topology: the bottom of the traditional basis is the empty set represented
by any basic open set with the empty set in at least one factor, while the bottom of

∐
γ∈Γ Aγ has the

bottom element of
∏

γ∈Γ Aγ uniquely represented by that tuple which is bottom in every coordinate. More
importantly, this behavior of

∐
γ∈Γ Aγ prevents the injections {ϕγ}γ∈Γ from preserving bottom elements (if

|Γ| ≥ 2). This deficiency of
(∐

γ∈Γ Aγ , {ϕγ}γ∈Γ

)
is now addressed in Step 2 (3.5) before applying Tool 1

(3.2) and Tool 2 (3.3). The insertion of Step 2 into the construction at this point is essential and relates to
the cboice of relation R in Step 4 (3.7) and, even more importantly, to the eventual couniversality of the
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injections of the frame coproduct at the conclusion of Step 4: both issues are discussed more fully in 3.8
below,

3.5 Step 2: Coproduct of {Aγ}γ ∈Γ in SLat⊥ (∧). Put a binary relation Q on
∐

γ∈Γ Aγ from Step 1 as
follows:

Case 1. ∀γ ∈ Γ, aγ 6= ⊥. In this case,

〈aγ〉γ ∈Γ Q 〈bγ〉γ ∈Γ ⇔ 〈aγ〉γ ∈Γ = 〈bγ〉γ ∈Γ .

Case 2. ∃ γ ∈ Γ, aγ = ⊥. In this case,

〈aγ〉γ ∈Γ Q 〈bγ〉γ ∈Γ ⇔ ∃β ∈ Γ, bβ = ⊥.

Take
∐

γ∈Γ Aγ /Q to be the corresponding quotient; and put ¹ on
∐

γ∈Γ Aγ /Q by saying that
[
〈⊥γ〉γ∈Γ

]
¹

all classes, and otherwise ¹ is the trivial extension of the original order ≤. Let q :
∐

γ∈Γ Aγ →
∐

γ∈Γ Aγ /Q
be the quotient map.

3.5.1 Theorem. The following hold:

1. Q is an equivalence relation.

2.
∐̂

γ∈Γ Aγ ≡
∐

γ∈Γ Aγ /Q, with the order ¹, is an object in SLat⊥ (∧) , i.e.,
∐̂

γ∈ΓAγ is a meet semi-

lattice with bottom
[
〈⊥γ〉γ∈Γ

]
.

3. The quotient map q :
∐

γ∈Γ Aγ →
∐̂

γ∈Γ Aγ is a SLat(∧) epimorphism and each q◦ϕβ : Aβ →
∐̂

γ∈Γ Aγ

is a SLat⊥ (∧) morphism.

4. The quotient map q is universal with respect to all SLat(∧) morphisms from
∐

γ∈Γ Aγ to SLat⊥ (∧)
objects.

5.
(∐̂

γ∈Γ Aγ , {q ◦ ϕγ}γ ∈Γ

)
is the coproduct of {Aγ}γ ∈Γ in SLat⊥ (∧).

We now have a precise counterpart
(∐̂

γ∈Γ Aγ , {q ◦ ϕγ}γ ∈Γ

)
to the basis of the traditional product

topology together with the usual injections of the factor topologies into that basis.

3.6 Step 3: First attempt to “close up” the “basis”
∐̂

γ∈Γ Aγ. Apply the Downset Functor Theorem

in Tool 1 to Step 2 to create the free frame D
(∐̂

γ∈Γ Aγ

)
along with the unit

η b‘
γ∈Γ Aγ

:
∐̂

γ∈Γ
Aγ → D

(∐̂
γ∈Γ

Aγ

)
,

and consider the compositions

η b‘
γ∈Γ Aγ

◦ q ◦ ϕβ : Aβ → D
(∐̂

γ∈Γ
Aγ

)
.

These compositions preserve finite meets and bottom (the empty join) and possibly some nonempty joins; so

that
(
D

(∐̂
γ∈Γ Aγ

)
,
{

η b‘
γ∈Γ Aγ

◦ q ◦ ϕγ

}
γ∈Γ

)
acts somewhat like a product topology, i.e., somewhat like

the Frm coproduct of {Aγ}γ∈Γ.

3.6.1 Question. Let M 6= ∅ be any nonempty set, fix β ∈ Γ, and let {am : m ∈ M} ⊂ Aβ . Is it necessarily
the case that (

η b‘
γ∈Γ Aγ

◦ q ◦ ϕβ

)( ∨

m∈M

am

)
=

∨

m∈M

(
η b‘

γ∈Γ Aγ
◦ q ◦ ϕβ

)
(am) ?
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Whenever the answer is “yes”, it means that this “union of basic open subsets” has been “closed up”. But
the answer need not be always “yes”, leading us to Step 4 below.

3.7 Step 4: Second attempt to “close up” the “basis”. We apply the Frame Quotient Theorem in
Tool 2 to Step 3. Put on D

(∐̂
γ∈ΓAγ

)
the binary relation R that essentially relates the two sides of Question

3.6.1; namely, let R be given by
{ ((

η b‘
γ∈Γ Aγ

◦ q ◦ ϕβ

) (∨
m∈M am

)
,
∨

m∈M

(
η b‘

γ∈Γ Aγ
◦ q ◦ ϕβ

)
(am)

)
:

β ∈ Γ, M 6= ∅, {am : m ∈ M} ⊂ Aβ

}
.

Now the Frame Quotient Theorem creates the quotient frame

D
(∐̂

γ∈Γ
Aγ

)
/R

along with the nucleus νR : D
(∐̂

γ∈Γ Aγ

)
→ D

(∐̂
γ∈Γ Aγ

)
/R. Put

⊕

γ∈Γ

Aγ ≡ D
(∐̂

γ∈Γ
Aγ

)
/ R,

ιβ : Aβ →
⊕

γ∈Γ

Aγ by ιβ ≡ νR ◦ η b‘
γ∈Γ Aγ

◦ q ◦ ϕβ .

3.7.1 Theorem. The following hold:

1. Each ιβ preserves arbitrary
∨

and finite ∧, i.e., is a frame morphism.

2.
(⊕

γ∈Γ Aγ , {ιγ}γ∈Γ

)
is the coproduct in Frm of {Aγ}γ∈Γ, i.e.,

(⊕
γ∈Γ Aγ ,

{
ιop
γ

}
γ∈Γ

)
is the product

in Loc of {Aγ}γ∈Γ .

Proof. Clearly
⊕

γ∈Γ Aγ is a frame. For each β ∈ Γ, each of νR, η b‘
γ∈Γ Aγ

, q, ϕβ preserves finite meets, so

that ιβ does; each of νR, η b‘
γ∈Γ Aγ

, q ◦ ϕβ preserves bottom (even though ϕβ does not if |Γ| ≥ 2—see 3.8

below), so that ιβ ; by choice of the relationship R on D
(∐̂

γ∈Γ Aγ

)
, ιβ preserves arbitrary nonempty joins;

and so {ιγ}γ∈Γ is a family of frame maps from the Aγ ’s to
⊕

γ∈Γ Aγ .

Now let
(
B, {iγ}γ∈Γ

)
be given with B a frame and {iγ}γ∈Γ a collection of frame maps from from the

Aγ ’s to B. The couniversality of the ϕγ ’s forces the existence of a meet semilattice morphism

h1 :
∐

γ∈Γ

Aγ → B

which factors the iγ ’s through the ϕγ ’s; the couniversality of q then forces the existence of a bottom preserving
meet semilattice morphism

h2 :
∐̂

γ∈Γ
Aγ → B

which factors h1 through q; the universality of η b‘
γ∈Γ Aγ

with respect to bottom preserving meet semilattice
morphisms then forces the existence of a frame map

h3 : D
(∐̂

γ∈Γ
Aγ

)
→ B

which factors h2 through η b‘
γ∈Γ Aγ

; and, finally, the couniversality of νR then forces the existence of a frame
map

h :
⊕

γ∈Γ

Aγ → B

which factors h3 through νR. It follows

iβ = h1 ◦ ϕβ = h2 ◦ q ◦ ϕβ = h3 ◦ η b‘
γ∈Γ Aγ

◦ q ◦ ϕβ

= h ◦ νR ◦ η b‘
γ∈Γ Aγ

◦ q ◦ ϕβ = h ◦ ιγ ,
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so that h factors the iγ ’s through the ιγ ’s.
As for the uniqueness of h, let ĥ :

⊕
γ∈Γ Aγ → B be another frame map factoring the iγ ’s through the

ιγ ’s. Then ∀β ∈ Γ, it is the case that

h ◦ νR ◦ η b‘
γ∈Γ Aγ

◦ q ◦ ϕβ = iβ = ĥ ◦ νR ◦ η b‘
γ∈Γ Aγ

◦ q ◦ ϕβ .

Since {ϕγ}γ∈Γ is an epi-sink (3.4.2), then

h ◦ νR ◦ η b‘
γ∈Γ Aγ

◦ q = ĥ ◦ νR ◦ η b‘
γ∈Γ Aγ

◦ q,

and the surjectivity of q (3.5.1(3)) yields

h ◦ νR ◦ η b‘
γ∈Γ Aγ

= ĥ ◦ νR ◦ η b‘
γ∈Γ Aγ

.

Now the surjectivity of η b‘
γ∈Γ Aγ

with respect to a generating subset of D
(∐̂

γ∈Γ Aγ

)
(3.2.1(5)) implies

h ◦ νR = ĥ ◦ νR,

and the surjectivity of νR (3.3.1(1)) now gives

h = ĥ. 2

We may simply speak of
⊕

γ∈Γ Aγ as the localic product of the Aγ ’s.

3.8 Discussion. The insertion of Step 2 into the construction of the localic product is mandatory and
deserves some discussion. There are two main points, the first dealing with a possible family of frame maps
as a candidate for injections, and the second dealing with whether this candidate is couniversal—and it is
the second point which is unavoidably critical.

1. Step 2 interposes q to clean up the behavior of the {ϕγ}γ∈Γ with respect to preservation of bottom

elements: this yields
(∐̂

γ∈Γ Aγ , {q ◦ ϕγ}γ ∈Γ

)
as a precise counterpart to the basis of a product topol-

ogy as well as allows for a smaller relation R in Step 4 defined using nonempty sets M . On the other
hand, if one were to bypass Step 2 and apply the Downset Functor Theorem directly to Step 1 to get
Step 3 (without Step 2) and then apply the Frame Quotient Theorem to Step 3 to get Step 4, then the
members of the family

{
νR ◦ η‘

γ∈Γ Aγ
◦ ϕγ

}
γ∈Γ

fail to preserve bottom and fail to be frame maps and

injections for the frame coproduct. This problem of preserving bottom can be rectified by enlarging
the relation R in Step 4 to allow the indexing set M to be nonempty; but the “aesthetic” problem
of

∐
γ∈Γ Aγ not matching the basis of a product topology remains as well as the “real” problem of

couniversality of the family
{

νR ◦ η‘
γ∈Γ Aγ

◦ ϕγ

}
γ∈Γ

, the latter being addressed in our next point.

To conclude this point, it is both more efficient and topologically intuitive to insert Step 2 into the
construction.

2. Continuing the discussion from (1), let us try to prove that
{
νR ◦ η‘

γ∈Γ Aγ
◦ ϕγ

}
γ∈Γ

is couniveral

with respect to the frame constructed in Steps 1, 3, 4 sans Step 2, call it A, with the assumption
that the relation R in Step 4 allows for empty M so that

{
νR ◦ η‘

γ∈Γ Aγ
◦ ϕγ

}
γ∈Γ

is a collection

of frame maps. Suppose that {iγ}γ∈Γ is another family of maps from the Aγ ’s to a frame B. For{
νR ◦ η‘

γ∈Γ Aγ
◦ ϕγ

}
γ∈Γ

to be couniversal, we must show there is a unique map h : A → B such that

∀β ∈ Γ, we have
iβ = h ◦ νR ◦ η‘

γ∈Γ Aγ
◦ ϕβ .

As in the proof of 3.7.1, we have that B is a meet-semilattice, so that the couniversality of the {ϕγ}γ∈Γ
forces the existence of a unique meet semilattice morphism

h1 :
∐

γ∈Γ

Aγ → B
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such that ∀γ ∈ Γ, we have
iγ = h1 ◦ ϕγ .

Now we want to continue this process to say that h1 :
∐

γ∈Γ Aγ → B factors uniquely through

η‘
γ∈Γ Aγ

:
∐

γ∈Γ

Aγ → D

∐

γ∈Γ

Aγ




via some frame map

h2 : D

∐

γ∈Γ

Aγ


 → B.

But since we only know that η‘
γ∈Γ Aγ

is universal with respect to meet semilattice maps that preserve
bottom, we know we have the factoring map h2 if and only if we know that h1 preserves bottom. But
we can know that h1 preserves bottom if and only if |Γ| = 1. Sufficiency is trivial. To see necessity, we
note that iγ = h1 ◦ ϕγ is a frame map and preserves bottom. But if |Γ| ≥ 2, then each ϕγ does not
preserve bottom and in fact cannot produce bottom as an output: let γ1 6= γ2 in Γ, a 6= ⊥ ∈ Aγ1 , and
> ∈ Aγ2 ; then

ϕγ2 (⊥) =
{ ⊥, γ = γ1

>γ , γ 6= γ1
6= 〈⊥γ〉γ∈Γ ,

ϕγ2 (a) =
{

a, γ = γ1

>γ , γ 6= γ1
6= 〈⊥γ〉γ∈Γ .

Therefore we can never test h1 for preservation of bottom using iγ = h1 ◦ ϕγ , and therefore we
can never know whether h1 preserves bottom. Therefore we cannot know whether the universality
of η‘

γ∈Γ Aγ
can be applied to get h2, and therefore the proof of the couniversality of the family{

νR ◦ η‘
γ∈Γ Aγ

◦ ϕγ

}
γ∈Γ

cannot be continued, and this means that we do not have the localic product

(without Step 2) regardless of how R is chosen in Step 4. The only solution to this impasse is to insert
Step 2 between Step 1 and Step 3 to then insure that η b‘

γ∈Γ Aγ
is only used to factor meet semilattice

morphisms which preserve bottom. Therefore, it is mandatory to insert Step 2 into the localic product
construction of [13].

3.9 Question. Now that we have the localic product clearly and fully in hand, we may ask, in the case
when the locales are traditional or L-topologies, how the localic product compares order-theoretically with the
traditional or L-valued topological product, respectively? This is Question 1.1 and the subject of subsequent
sections of this paper.

In connection with 3.9, we have the following class of examples from [9]:

3.9.1 Example Class. Let X, Y be dense subspaces of a regular topological space such that X ∩ Y is not
dense in this space, and let TX , TY respectively denote the subspace topologies. Then TX⊕TY is not spatial
and hence by Theorem 1.2, TX ⊕ TY � TX ⊗ TY . As a special instance of this example class, TQ ⊕ TQ is
not spatial and TQ ⊕ TQ � TQ ⊗ TQ.

3.10 Remark. It should be pointed that not only does the localic product help secure the completeness of
Loc in general, but it is also useful for the explicit construction of many important structures and functors.

1. Pullbacks in Loc, or pushouts in Frm, are explicitly constructed using localic products together with
the Frame Quotient Theorem 3.3.1. This is an instance of the more general phenomenon in category
theory of pushouts being constructed using coproducts and coequalizers.

2. The construction of the important left-adjoint of the upper forgetful functor from L-Frm to Frm, for
L a complete chain, makes unavoidable use of the localic product—see [16, 17].
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4 LΩ a LPT and proofs of Theorems 1.4, 1.5, 1.6

That {L-Top : L ∈ |SFrm|} furnishes representations for all (semi)locales is well-known from [3, 5, 6, 10, 11,
14, 15, 16, 17, 18, 19, 20, 22, 24, 26], from which the following paragraph and all unreferenced and unproven
statements of this section are summarzed.

Fix L ∈ |Frm| . Let A ∈ |Loc| and put

Lpt (A) = Frm (A,L)

=
{

p : A → L | p preserves arbitrary
∨

and finite∧
}

and define the “first comparison map”

ΦL : A → LLpt(A) by ΦL (a) (p) = p (a) .

It is well-known that ΦL is a frame morphism; hence

LPT (A) ≡ (Lpt (A) , (ΦL)→ (A))

is an L-topological space called the L-spectrum of A. Since τ is a locale for each L-topological space (X, τ),
we may form the L-spectrum (Lpt (τ) , (ΦL)→ (τ)) of τ and compare it against the original space (X, τ) via
the “second comparison map” ΨL : X → Lpt (τ) defined by

ΨL(x) : τ → L via ΨL(x)(u) = u(x).

Given f : A → B in Loc, we set

LPT (f) : LPT (A) → LPT (B) by LPT (f) (p) = p ◦ fop.

Altogether we have a functor LPT : Loc → L-Top. Now in the opposite direction we have the functor
LΩ : L-Top → Loc given by

LΩ (X, τ) = τ, LΩ [f : (X, τ) → (Y, σ)] =
[
(f←L )|σ

]op

: τ → σ.

4.1 Definition. A locale A is L-spatial if ΦL is injective; an L-topological space (X, τ) is L-sober if ΨL is
bijective; (X, τ) is L-T0 if ΨL is injective; (X, τ) is L-S0 if ΨL is surjective; and (X, τ) is quasi -L-S0 (q-L-S0)
if

{p ∈ Lpt (τ) : coker (p) 6= τ − {⊥}} ⊂ (ΨL)→ (X) ,

where coker(p) ≡ {u ∈ τ : p (u) = >} . The L may be dropped if understood.

The L-S0 axiom ignores the issue of being L-T0. There can be at most one p ∈ Lpt (τ) with coker (p) =
τ − {⊥} ; so (X, τ) being q-L-S0 says ΨL is surjective except for at most one (L-)point on τ ; and if there
should be such a point, it would be 2-valued and the maximal point on τ with the pointwise ordering. For
crisp topological spaces (with L = 2), the q-L-S0 condition says each irreducible closed set, except the carrier
set (whole space), is the closure of a singleton. Clearly, L-sober implies L-T0 and L-S0, and L-S0 implies
q-L-S0.

1. Many L-T0 and q-L-S0 spaces are not L-S0 (and not L-sober). For L = 2, each infinite set X with the
cofinite topology Tcof is T0 (in fact, T1) and not S0—X is irreducible closed, but not the closure of a
(unique) singleton. Further, (X, Tcof ) is q-L-S0 since every irreducible closed subset other than X is
the closure of a singleton.

2. Many L-S0 spaces are not L-T0 (and not L-sober). For L = 2, each indiscrete space (Y, I) with at
least two elements is L-S0 and not L-T0 (and not L-sober).

3. Many q-L-S0 spaces are not L-T0. For L = 2, and using (X, Tcof ) from (1) and (Y, I) from (2), the
topological product (X × Y, Tcof ⊗ I) is q-L-S0 and not L-T0 (and not L-S0).

4. The examples of (1), (2), (3) are carried in L-Top for L 6= 2 by the characteristic functor Gχ. The
reader may construct other examples in a given L-Top not generated by Gχ.

4.2 Theorem. The following hold:
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1. ΨL : (X, τ) → LPT (τ) is continuous and relatively open.

2. LΩ a LPT with unit ΨL and counit Φop
L : A ← (ΦL)→ (A) (in Loc).

3. Each LΩ(X, τ) = τ is L-spatial.

4. A locale A is L-spatial ⇔ ΦL : A → (ΦL)→ (A) is a frame isomorphism⇔ there is (X, τ) ∈ |L-Top|
with τ ∼= A.

5. An L-topological space (X, τ) is L-T0 ⇔ ∀x, y ∈ X with x 6= y, ∃u ∈ τ, u (x) 6= u (y) ⇔ ΨL is an
L-embedding.

6. An L-topological space (X, τ) is L-S0 ⇔ ΨL is continuous and open.

7. An L-topological space (X, τ) is L-sober⇔ ΨL is an L-homeomorphism.

8. Each L-spectrum LPT (A) is L-sober.

9. LΩ ∼ LPT and L-SobTop ∼ L-SpatLoc, when LΩ a LPT is restricted, respectively, to these
categories: the full subcategory of L-Top of all L-sober (L-)topological spaces and the full subcategory
of Loc of all L-spatial locales.

Proof. All these statements and their proofs are well-known (e.g., [20, 22]) or straightforward, except possi-
bly the second equivalence of (4). For necessity of the second equivalence of (4), note that (Lpt (A) , (ΦL)→ (A))
is an L-topological space and apply (3) together with the first equivalence of (4). Now for sufficiency of the
second equivalence of (4), note LPT is a functor and so preserves isomorphisms; hence, LPT (A) is L-
homeomorphic to LPT (τ) . It now follows from 2.4.2(3) that (ΦL)→ (A) ∼= (ΦL)→ (τ); also (ΦL)→ (τ) ∼= τ
by (3) and the first equivalence of (4), and τ ∼= A by assumption. Therefore, (ΦL)→ (A) ∼= A. 2

The situation when M is a subframe of L, including the cases M = L or M = 2 (which requires L to be
consistent), yields the following extension—essentially corollary—of 4.2 needed in Sections 5 and 6.

4.2.1 Theorem. Let M be a subframe of L. The following hold:

1. ∀M subframe of L, [∀ (X, τ) ∈ |L-Top| , LΩ(X, τ) = τ is M -spatial]⇔ L is M -spatial. In particular,
L is L-spatial.

2. L is M -spatial⇔ M -SpatLoc = L-SpatLoc ⇔ M -SobTop ∼ L-SobTop.

3. If L is M -spatial, then M -Top is a full subcategory of L-Top and the L-topological product (in L-Top)
of M -topological spaces is precisely the M -topological product (in M -Top) of these spaces.

4. If L is M -spatial, then MPT preserves all localic products to L-topological products (in L-Top) of
M -topological spaces.

Proof. Ad (1). Let M be a subframe of L. For necessity, let X = 1 (singleton) and set τ = L1. Then
by assumption, τ is M -spatial. But L ∼= L1. Using the last equivalence of 4.2(4), L is M -spatial. For
sufficiency, suppose L is M -spatial, and let u 6= v in τ. By 4.2(3), τ is L-spatial, so that ΦL : τ →
(ΦL)→ (τ) is injective and so ΦL (u) 6= ΦL (v). Since (ΦL)→ (τ) ⊂ LLpt(τ), this means there is frame map
p : τ → L, p (ΦL (u)) 6= p (ΦL (v)) . But L is M -spatial, so by similar argumentation, there is a frame map
q : L → M, q ( p (ΦL (u))) 6= q (p (ΦL (v))) . Since q ◦ p : τ → M is a frame map, reversing this argumentation
yields that ΦM : τ → (ΦM )→ (τ) is injective, and so τ is M -spatial. The proof of the first statement of (1)
yields the second statement of (1) using the L-topological space

(
1, L1

)
.

Ad (2). Suppose L is M -spatial. Then by (1) we have M -SpatLoc = L-SpatLoc; and it then follows
that

M -SobTop ∼ M -SpatLoc = L-SpatLoc ∼ L-SobTop.

On the other hand if we assume M -SobTop ∼ L-SobTop, then we must have M -SpatLoc ∼ L-SpatLoc.
This means that there is an adjunction between these categories whose units and counits are isomorphisms
in their respective categories. In particular, each L-spatial locale—and hence every L-topology—is order-
isomorphic to some M -spatial locale and is therefore M -spatial (4.2(3,4)). Applying (1) yields that L is
M -spatial.
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Ad (3). Since M is a subframe of L, each M -topological space is clearly an L-topological space. Further,
we observe that

f←M = (f←L )|MX ,

from which it follows that a ground map between the carrier sets of two M -topological spaces is M -continuous
if and only if it is L-continuous. The claims of (3) now follow.

Ad (4). Because of 4.2(3,4), it suffices to let {(Xγ , τγ) : γ ∈ Γ} be a family of L-topological spaces. Since
L is M -spatial, then each τγ is M -spatial by (1). Thus by 4.2(4), ∀γ ∈ Γ, ∃ (Yγ , σγ) ∈ M -Top such that
σγ
∼= τγ . Since

⊕
is the categorical product for Loc, it follows that

⊕

γ∈Γ

σγ
∼=

⊕

γ∈Γ

τγ .

And since MPT is a functor, the following hold: ∀γ ∈ Γ,

(Mpt (σγ) , (ΦM )→ (σγ)) = MPT (σγ)
∼= MPT (τγ)
= (Mpt (τγ) , (ΦM )→ (τγ)) ,

and also

MPT


⊕

γ∈Γ

σγ


 ∼= MPT


⊕

γ∈Γ

τγ


 ,

all “∼=”in the sense of L-homeomorphisms (by (3)). Now the adjunction MΩ a MPT assures us that MPT
preserves localic products to M -topological products, in which case we have

MPT


⊕

γ∈Γ

τγ


 ∼= MPT


⊕

γ∈Γ

σγ




=


∏

γ∈Γ

Mpt (σγ) ,
⊗

γ∈Γ

(ΦM )→ (σγ)




∼=

∏

γ∈Γ

Mpt (τγ) ,
⊗

γ∈Γ

(ΦM )→ (τγ)


 .

But all these products may be taken as L-topological products, concluding the proof of (4) and the theorem.
2

It should be noted that the classical representation of spatial locales by sober topological spaces is obtained
from the foregoing, via the characteristic functor Gχ, by restricting L = 2. More specifically, referring to
the Ω : Top → Loc and PT : Top ← Loc functors of [9] and the associated terminology of Pt,Φ,Ψ, we
have—using and mixing Gχ (and its inverse) at both the fibre and categorical level—

Pt = 2pt, Φ = Gχ ◦ Φ2, Ψ = G−1
χ ◦Ψ2 ◦Gχ,

Ω = G−1
χ ◦ LΩ ◦Gχ, PT = Ω = Gχ ◦ 2PT,

LΩ a LPT with unit Ψ and counit Φop
L .

Further, noting that spatiality is 2-spatiality, and sobriety of (X, T) is logically equivalent to 2-sobriety of
Gχ (X, T), we now have SobTop ∼ SpatLoc via the restriction of Ω a PT to these subcategories.

4.2.2 Terminology.

1. LPT ◦ LΩ : L-Top → L-SobTop is the L-soberification functor, LPT ◦MΩ : M -Top → L-SobTop
is the L-M soberification functor, and MPT ◦ LΩ : L-Top → M -SobTop is the M -L soberification
functor. These terms are justified by 4.2 and 4.2.1 above.

2. We refer only to L-continuity and L-homeomorphisms under the conditions of 4.2.1(3).
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4.3 Proof of Theorem 1.4. Assume
⊕

γ∈Γ τγ
∼= ⊗

γ∈Γ τγ . Now since
⊗

γ∈Γ τγ is an L-topology, the second
equivalence of 4.2(4) now applies to say

⊕
γ∈Γ τγ is L-spatial. 2

4.4 Proof of Theorem 1.5. The first statement of 1.5 follows from the second statement of 1.5 using
4.2(5) and choosing M = L. We now show the second statement of 1.5. Assume that M is a subframe of L
and L is M -spatial; and assume

⊕
γ∈Γ τγ

∼= ⊗
γ∈Γ (ΦM )→ (τγ). Then the M -spatiality of

⊕
γ∈Γ τγ follows

from 4.2(4) since the L-topology
⊗

γ∈Γ (ΦM )→ (τγ) is M -spatial by 4.2.1(1).
Now suppose for sufficiency that

⊕
γ∈Γ τγ is L-spatial. Then 4.2.1(2) implies that

⊕
γ∈Γ τγ is M -spatial.

Now 4.2.1(4) states that MPT preserves products from Loc to L-Top; and this implies that

Mpt


⊕

γ∈Γ

τγ


 , (ΦM )→


⊕

γ∈Γ

τγ





 ∼=


 ∏

γ ∈Γ

Mpt (τγ) ,
⊗

γ∈Γ

(ΦM )→ (τγ)


 ,

“∼=” refers to L-homeomorphism (4.2.1(3)), which by 2.4.2(3) implies that

(ΦM )→

⊕

γ∈Γ

τγ


 ∼=

⊗

γ∈Γ

(ΦM )→ (τγ) .

Now from the M -spatiality of
⊕

γ∈Γ τγ , it follows from the first equivalence of 4.2(4) that

⊕

γ∈Γ

τγ
∼= (ΦM )→


⊕

γ∈Γ

τγ


 ,

forcing
⊕

γ∈Γ τγ
∼= ⊗

γ∈Γ (ΦM )→ (τγ) . 2

4.5 Proof of Theorem 1.6. Because of 4.3, we need only prove sufficiency. From 4.4 we already have that⊕
γ∈Γ τγ

∼= ⊗
γ∈Γ (ΦL)→ (τγ). Now since each (Xγ , τγ) is L-sober, it follows from 4.2(7) that

∀γ ∈ Γ, (Xγ , τγ) ∼= (Lpt (τγ) , (ΦL)→ (τγ)) ,


 ∏

γ ∈Γ

Xγ ,
⊗

γ∈Γ

τγ


 ∼=


 ∏

γ ∈Γ

Lpt (τγ) ,
⊗

γ∈Γ

(ΦL)→ (τγ)


 .

And 2.4.2(3) now applies to say that
⊗

γ∈Γ

τγ
∼=

⊗

γ∈Γ

(ΦL)→ (τγ) .

Hence
⊕

γ∈Γ τγ
∼= ⊗

γ∈Γ τγ . 2

Theorem 1.6.1 generalizes Theorem 1.6 from L-sober spaces to L-S0 spaces, and not assuming the L-T0

axiom forces a quite different proof needing Section 6 for its set-up—see 6.12 below. The L-S0 condition in
1.6.1 is further weakened in 1.7.1 to q-L-S0 in the presence of prime separation and normalization by means
of yet another and different proof in Section 8 below.

5 Separation conditions in L-topological products

This section identifies “separation conditions” related to how “distinct” factors in a product space are from
each other. As it turns out, factors in traditional topological products and localic products do remain
separated from each other in certain senses; but this is generally not the case for L-topological products
when |L| ≥ 3—such products can be quite “messy” and factors may “spill” over into each other in various
ways. Since one of the primary goals of this paper is to compare localic products of L-topologies with
L-topological products of L-topologies, restrictions under which L-topological products are better behaved
with respect to these separation conditions play an essential role in subsequent sections.

We begin by cataloguing separation conditions satisfied by traditional topological product spaces and
localic products. In the remainder of this paper, “AC” refers to the Axiom of Choice.
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5.1 Fact (separation conditions in traditional topological products). Let {(Xγ ,Tγ) : γ ∈ Γ} ⊂
|Top| , let Uγ , Vγ ∈ Tγ for each γ ∈ Γ, and let Λ ⊂ Γ.

1. Suppose Λ is finite and
∏

λ∈Λ Uλ 6= ∅. Then the following hold:

(a)
∏

λ∈Λ Uλ ⊂
∏

λ∈Λ Vλ ⇔ ∀λ ∈ Λ, Uλ ⊂ Vλ (product separation).

(b) ∀β ∈ Λ,

π→β

(∏

λ∈Λ

Uλ

)
= Uβ and π→Q

γ 6=β Xγ

(∏

λ∈Λ

Uλ

)
=


∏

λ 6=β

Uλ




((upper) projection separation).

2. Suppose
∏

λ∈Λ Vγ 6=
∏

λ∈Λ Xλ. Then the following hold:

(a)
∑

λ∈Λ Uλ ⊂
∑

λ∈Λ Vλ ⇔ ∀λ ∈ Λ, Uλ ⊂ Vλ (sum separation), where “
∑

” indicates the “star” or
“sum” operation, namely

∑

λ∈Λ

Uλ =
⋃

λ∈Λ


Uλ ×

∏

β 6=λ

Uβ


 ,

and similarly for
∑

γ∈Γ Vγ .

(b) ∀β ∈ Λ,

(πβ)→

(∑

λ∈Λ

Vλ

)
= Vβ and

(
πQ

γ 6=β Xγ

)
→

(∑

λ∈Λ

Vλ

)
=


∑

λ6=β

Vλ




(lower projection separation), where (πβ)→ is the lower image operator of πβ .

3. If Λ is finite and each Vγ 6= Xγ , then
∑

γ∈Γ Vγ 6=
∏

γ∈Γ Xγ and
∏

λ∈Λ

Uλ ×
∏

γ∈Γ−Λ

Xγ ⊂
∑

γ∈Γ

Vγ ⇔ ∃λ ∈ Λ, Uλ ⊂ Vλ

(prime separation).

Each forward direction of (1)(a), (2)(a), 3(a) requires AC when Λ is infinite or if Γ is infinite and the
products indexed over Λ are viewed as subsets of the product of all the Xγ ’s. The assumption

∏
λ∈Λ Uλ 6= ∅[∏

λ∈Λ Vγ 6=
∏

λ∈Λ Xλ

]
can be replaced for finite Λ by assuming each Uλ 6= ∅ [Vλ 6= Xλ]; and for infinite Λ

this replacement can be made under AC. Extensions of these properties for L-topological spaces are discussed
in the sequel.

5.2 Product separation in localic products. Assuming the material and notation of Section 3 above,
we take the following from [13]. Technically, we are really looking at a kind of “sum separation” in frame
coproducts and hence a ”product separation” in localic products, but retaining the addition notation of the
frame coproduct. Put O ≡

[
〈⊥γ〉γ∈Γ

]
in

⊕
γ∈Γ Aγ , the equivalence class in Step 2 of Section 3 of the tuple

in the frame product in which each coordinate is bottom. It is necessary to get a sense of how one takes a
product (or sum) of elements of the Aγs in the localic product (5.2.2) before stating the product separation
condition in the localic product.

5.2.1 Proposition. U ∈ ⊕
γ∈Γ Aγ is saturated⇔ each of the following statements hold:

1. O ⊂ U.

2. ∀M 6= ∅, ∀m ∈ M, ∀
[〈

am
γ

〉
γ∈Γ

]
∈ U, ∀ 〈aγ〉γ∈Γ ∈

∐
γ∈Γ Aγ , ∀β ∈ Γ such that

aγ =
{

am
γ , γ 6= β, ∀m ∈ M∨

m∈M am
γ , γ = β

,

it is the case that
[
〈aγ〉γ∈Γ

]
∈ U .
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5.2.2 Proposition. Let
[
〈aγ〉γ∈Γ

]
∈ ∐̂

γ∈Γ Aγ and put

⊕γ∈Γaγ ≡ ↓
(
〈aγ〉γ∈Γ

)
∪O.

Then ⊕γ∈Γaγ is saturated.

5.2.3 Corollary (product separation condition in localic products). Let aγ 6= ⊥γ for each γ ∈ Γ.
Then ∀ 〈bγ〉γ∈Γ ∈

∐
γ∈Γ Aγ ,

⊕γ∈Γaγ ≤ ⊕γ∈Γbγ ⇔ ∀γ ∈ Γ, aγ ≤ bγ .

We now define various separation conditions for L-topological products, including a finitary version of 5.2.3
(since as in 5.1 we are only interested in the basic open subsets of the L-product topology).

5.3 Definition (separation conditions for L-product topology). Let {(Xγ , τγ) : γ ∈ Γ} be a collection
of L-topological spaces.

1. {(Xγ , τγ) : γ ∈ Γ} is product separated if ∀n ∈ N, ∀ {γi}n
i=1 ⊂ Γ, [∀i = 1, ..., n, aγi

, bγi
∈ τγi

] with
£n

i=1aγi
6= ⊥ (in

⊗
γ∈Γ τγ),

£n
i=1aγi

≤ £n
i=1bγi

⇔ ∃ i = 1, ..., n, aγi
≤ bγi

.

2. {(Xγ , τγ) : γ ∈ Γ} is sum separated if ∀B ⊂ Γ, [∀β ∈ B, aβ , bβ ∈ τβ ] with ¢β∈Bbβ 6= > (in
⊗

γ∈Γ τγ),

¢β∈Baβ ≤ ¢β∈Bbβ ⇔ ∀β ∈ B, aβ ≤ bβ .

3. {(Xγ , τγ) : γ ∈ Γ} is prime separated if ∀n ∈ N, ∀ {γi}n
i=1 ⊂ Γ, [∀i = 1, ..., n, aγi ∈ τγi ], ∀B ⊂ Γ with

{γi}n
i=1 ⊂ B, [∀β ∈ B, bβ ∈ τβ − {>}] , then ¢β∈Bbβ 6= > (in

⊗
γ∈Γ τγ) and

£n
i=1aγi ≤ ¢γ∈Γbγi ⇔ ∃ i = 1, ..., n, aγi ≤ bγi .

4. {(Xγ , τγ) : γ ∈ Γ} is weakly prime separated if ∀n ∈ N, ∀ {γi}n
i=1 ⊂ Γ, [∀i = 1, ..., n, aγi ∈ τγi ], ∀B ⊂ Γ

with {γi}n
i=1 ⊂ B, [∀β ∈ B, bβ ∈ τβ − {>}] , then ¢β∈Bbβ 6= > (in

⊗
γ∈Γ τγ) and

£n
i=1aγi ≤ ¢γ∈Γbγ ⇒ ∃ j = 1, ..., n, £n

i=1aγi ≤ bγj £
(
£γ 6=γj>

)
,

(> in
⊗

γ 6=γi
τγ).

5. {(Xγ , τγ) : γ ∈ Γ} is upper projection separated if ∀n ∈ N, ∀ {γi}n
i=1 ⊂ Γ, [∀i = 1, ..., n, aγi ∈ τγi ] with

£n
i=1aγi 6= ⊥ (in

⊗
γ∈Γ τγ), ∀j = 1, ..., n,

(
πγj

)→
L

(£n
i=1aγi) = aγj and

(
πQ

γ 6=γj
Xγ

)→
L

(£n
i=1aγi) = £i 6=jaγi .

6. {(Xγ , τγ) : γ ∈ Γ} is lower projection separated if ∀B ⊂ Γ, [∀β ∈ B, bβ ∈ τβ ] with ¢β∈Bbβ 6= > (in⊗
γ∈Γ τγ), ∀δ ∈ B,

(πδ)L→ (¢β∈Bbβ) = bδ and
(
πQ

β 6=δ Xβ

)
L→

(¢β∈Bbβ) = ¢β 6=δbβi .

5.3.1 Proposition. The conditions of weak prime separation and prime separation are equivalent if the
condition of product-separation is assumed.

Separation of factors in L-topological product spaces are closely related to the various normalization prop-
erties in L-topology introduced in 2.2.2 above.

5.4 Definition (normalization properties in L-topology).

1. An L-topological space (X, τ) is normalized [co-normalized, binormalized, hypernormalized, condi-
tionally normalized ] if τ is normalized [co-normalized, binormalized, hypernormalized, conditionally
normalized, resp.] as in 2.2.2 above.
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2. A collection {(Xγ , τγ) : γ ∈ Γ} of L-topological spaces is normalized [co-normalized, binormalized, con-
ditionally normalized, hypernormalized ] if ∀γ ∈ Γ, (Xγ , τγ) is normalized [co-normalized, binormalized,
conditionally normalized, hypernormalized, resp.].

5.4.1 Lemma. Let {(Xγ , τγ) : γ ∈ Γ} be a nonempty collection of nonempty L-topological spaces, B be the
standard family of basic open sets, and Bco be the corresponding family of cross-sums.

1. For each basic open set £n
i=1uγi

,

||£n
i=1uγi || =

n∧

i=1

||uγi || , ||£n
i=1uγi ||co =

n∧

i=1

||uγi ||co ,

for each cross-sum ¢n
i=1uγi

,

||¢n
i=1uγi

|| =
n∨

i=1

||uγi || .

and when L is a coframe,

||¢n
i=1uγi

||co =
n∨

i=1

||uγi
||co .

2. For each γ ∈ Γ, ∀uγ ∈ τγ ,
∣∣∣∣π←γ (uγ)

∣∣∣∣ = ||uγ || ,
∣∣∣∣π←γ (uγ)

∣∣∣∣
co

= ||uγ ||co .

3. {(Xγ , τγ) : γ ∈ Γ} is normalized if and only if B is normalized if and only if B is conormalized.

4. {(Xγ , τγ) : γ ∈ Γ} is normalized if and only if Bco is normalized; and if L is a coframe, then {(Xγ , τγ) : γ ∈ Γ}
is conormalized if and only if Bco is conormalized

5. If L is a diframe, then {(Xγ , τγ) : γ ∈ Γ} is binormalized if and only if B is binormalized if and only
if Bco is binormalized.

6. {(Xγ , τγ) : γ ∈ Γ} is hypernormalized if and only if B is hypernormalized (AC if Γ nonfinite on neces-
sity).

Proof. Ad (1). We note in the cross-product case for norms that the first infinite distributive law yields
∣∣∣∣∣

∣∣∣∣∣
n∧

i=1

π←γi
(uγi)

∣∣∣∣∣

∣∣∣∣∣ =
∨

〈xγ〉 ∈
Q

γ∈Γ Xγ

(
n∧

i=1

π←γi
(uγi)

)
(〈xγ〉)

=
n∧

i=1


 ∨

xγi
∈Xγi

uγi (xγi)


 =

n∧

i=1

||uγi || ,

where the independence of variables justifies the distribution of the join across all the meets in the second
equals sign; and the cross-product case for conorms follows by associativity of meets. Further, the cross-sum
case for norms follows by the associativity for joins, and the cross-sum case for conorms follows dually to
the cross-product case for norms using the second infinite distributive law.

Ad (2). We note for norms that for each uβ ∈ τβ ,

∣∣∣∣π←β (uβ)
∣∣∣∣ =

∨

〈xγ〉 ∈
Q

γ∈Γ Xγ

(
π←β (uβ)

) 〈xγ〉 =
∨

xβ∈Xβ

uβ (xβ) = ||uβ || ,

and the connorm case follows dually.
Ad (3,4,5). That the family of spaces has a property implies that the indicated family of open L-subsets

of the product has a property follows from the appropriate statement of (1); and the converse directions
follow from (2).

Ad (6). Assume {(Xγ , τγ) : γ ∈ Γ} is hypernormalized. Let two basic open sets u, v be given. W.L.O.G.,
these sets may be written with a common subset of indices from Γ, namely,

u =
n∧

i=1

π←γi
(uγi) , v =

n∧

i=1

π←γi
(vγi) .
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Assume u � v. This means that ∃ j ∈ {1, ..., n} with uγj � vγj ; and since
(
Xγj , τγj

)
is hypernormalized,

∃ sγj ∈ Xγi with uγj

(
sγj

)
= > and vγj

(
sγj

)
= ⊥. Since that hypernormalized implies normalized (2.2.3), it

is the case that ∀k ∈ {1, ..., n} − {j} , ∃ sγk
∈ Xγk

with uγk
(sγk

) = >. Now choose

〈zγ〉γ∈Γ−{γ1,...,γn} ∈
∏

γ∈Γ−{γ1,...,γn}
Xγ ,

and then put 〈xγ〉 ∈
∏

γ∈Γ Xγ by

xγ =
{

sγ , γ = γ1, ..., γn,
zγ , γ 6= γ1, ..., γn.

.

It follows that

u 〈xγ〉 =

(
n∧

i=1

π←γi
(uγi

)

)
〈xγ〉 =

n∧

i=1

uγi
(sγi

) =
n∧

k=1

> = >,

v 〈xγ〉 =

(
n∧

i=1

π←γi
(vγi)

)
〈xγ〉 = vγj (sγi) ∧


∧

k 6=j

vγk
(sγk

)




= ⊥ ∧

∧

k 6=j

vγk
(sγk

)


 = ⊥,

which concludes the proof of necessity. Sufficiency follows immediately from the identity
(
π←β (uβ)

)
〈xγ〉 =

uβ (xβ) . 2

5.5 Lemma (normalization and separation conditions). Let {(Xγ , τγ) : γ ∈ Γ} be a collection of
nonempty L-topological spaces with |Γ| ≥ 2. Then the following hold:

1. {(Xγ , τγ) : γ ∈ Γ} is normalized if and only if it is upper projection separated, in which case it is
product separated.

2. If L is a coframe, then {(Xγ , τγ) : γ ∈ Γ} is conormalized if and only it is lower projection separated,
in which case it is sum separated.

3. If {(Xγ , τγ) : γ ∈ Γ} is hypernormalized, then it is prime separated (AC if Γ nonfinite).

4. Converses in (3) and the latter parts of (1,2) fail to hold if |L| ≥ 3.

Proof. Ad (1). For necessity, we assume {(Xγ , τγ) : γ ∈ Γ} is normalized and let n ∈ N, {γi}n
i=1 ⊂ Γ, (∀i =

1, ..., n, aγi ∈ τγi) with £n
i=1aγi 6= ⊥, and j = 1, ..., n. Then using Lemma 5.4.1, it follows

(
π→γj

(£n
i=1aγi)

) (
xγj

)
=

∨

πγj
〈yγ〉γ∈Γ = xγj

(£n
i=1aγi) 〈yγ〉γ∈Γ

= aγj

(
xγj

) ∧
∨

〈yγi〉i 6= j

(£i6=jaγi) 〈yγi〉

= aγj

(
xγj

) ∧ ||£i 6=jaγi ||
= aγj

(
xγj

) ∧
∧

i 6=j

||aγi ||

= aγj

(
xγj

) ∧ > = aγj

(
xγj

)
,

where the condition £n
i=1aγi 6= ⊥ implies that each aγi 6= ⊥ and hence ||aγi || = >; and it also follows that

(
π→Q

γ 6=γj
Xγ

(£n
i=1aγi)

)
〈xγi〉i 6=j =

∨

πQ
γ 6=γj

Xγ 〈yγ〉γ∈Γ = 〈xγi〉i 6=j

(£n
i=1aγi) 〈yγ〉γ∈Γ

= (£i 6=jaγi) 〈xγi〉i 6=j ∧
∨

aγj

(
xγj

)

= (£i 6=jaγi) 〈xγi〉i 6=j ∧
∣∣∣∣aγj

∣∣∣∣
= (£i 6=jaγi) 〈xγi〉i 6=j ∧ >
= (£i 6=jaγi) 〈xγi〉i 6=j ,
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where the condition £n
i=1aγi 6= ⊥ implies

∣∣∣∣aγj

∣∣∣∣ = >. So we now have that {(Xγ , τγ) : γ ∈ Γ} is upper
projection separated. Now for sufficiency, assume n ≥ 2, let j = 1, ..., n and aγj

∈ τγj
be arbitrary, and

choose each aγi for i 6= j to be >. Then from the assumption that {(Xγ , τγ) : γ ∈ Γ} is upper projection
separated and the computation just above, it follows that

> = (£i 6=jaγi
) = π→Q

γ 6=γj
Xγ

(£n
i=1aγi

)

= (£i 6=jaγi
) ∧ ∣∣∣∣aγj

∣∣∣∣ = > ∧ ∣∣∣∣aγj

∣∣∣∣,

and hence that
∣∣∣∣aγj

∣∣∣∣ = >. Hence each
(
Xγj

, τγj

)
is normalized; and so {(Xγ , τγ) : γ ∈ Γ} is normalized.

Now to see that {(Xγ , τγ) : γ ∈ Γ} is product separated, let n ∈ N, {γi}n
i=1 ⊂ Γ, (∀i = 1, ..., n, aγi

, bγi
∈

τγi) with £n
i=1aγi 6= ⊥ and assume £n

i=1aγi ≤ £n
i=1bγi . Let j = 1, ..., n be arbitrary. Then the upper

projection separation of {(Xγ , τγ) : γ ∈ Γ} and the isotonicity of
(
πγj

)→
L

trivially yield the following:

aγj
= π→γj

(£n
i=1aγi

) ≤ π→γj
(£n

i=1bγi
) = bγj

.

It follows that {(Xγ , τγ) : γ ∈ Γ} is product separated, completing the proof of (1).
Ad (2). The proofs are dual to those for (1).
Ad (3). Assume {(Xγ , τγ) : γ ∈ Γ} is a hypernormalized family of nonempty spaces, and let all of the

following: n ∈ N, {γi}n
i=1 ⊂ Γ, aγi

∈ τγi
, B ⊂ Γ with {γi}n

i=1 ⊂ B, bβ ∈ τβ − {>}. Since each (Xγ , τγ) is
hypernormalized, 2.2.3 applies to say that ∀β ∈ B, ∃ yβ ∈ Xβ , bβ (yβ) = ⊥. Also ∀γ ∈ Γ − B, let yγ ∈ Xγ .
It follows that

(¢β∈Bbβ) 〈yγ〉γ∈Γ =
∨

β∈B

bβi (yβ) =
∨

β∈B

⊥ = ⊥.

Hence ¢β∈Bbβ 6= >. Now assume £n
i=1aγi ≤ ¢β∈Bbβ ; and let us further assume that

∀ i = 1, ..., n, aγi � bγi .

Then the hypernormalized condition implies

∀ i = 1, ..., n, ∃ zγi ∈ Xγi , aγi (zγi) = >, bγi (zγi) = ⊥.

Choose 〈xγ〉γ∈Γ so that

∀ i = 1, ..., n, xγi = zγi ,

∀γ ∈ Γ− {γi}n
i=1 , xγ = yγ from above.

It follows, using the associativity of joins, that

(£n
i=1aγi) 〈xγ〉γ∈Γ =

n∧

i=1

aγi (xγi)

=
n∧

i=1

> = >

� ⊥ =
∨

β∈B

⊥

=

(
n∨

i=1

bγi (xγi)

)
∨


 ∨

β∈B−{γi}n
i=1

bβi (xβ)




= (¢β∈Bbβ) 〈xγ〉γ∈Γ ,

a contradiction. Hence {(Xγ , τγ) : γ ∈ Γ} is prime separated, completing the proof of (3) and the lemma.
2

5.5.1 Corollary. If a family of spaces is hypernormalized, then it possess all the conditions occurring in
5.3, 5.4, 5.5.

5.6 Lemma (existence of prime open subsets in L-product topology). Let {(Xγ , τγ) : γ ∈ Γ} be
prime separated and |L| ≥ 2. Then arbitrary cross sums of prime L-open subsets are prime L-open subsets in
the L-product topology. This holds in particular if {(Xγ , τγ) : γ ∈ Γ} is hypernormalized (AC if Γ nonfinite).
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Proof. Let B ⊂ Γ; and ∀β ∈ β, let bβ ∈ Pr (τβ). To show that ¢β∈Bbβ ∈ Pr
(⊗

γ∈Γ τγ

)
, we first note by

the prime separation condition that ¢β∈Bbβ 6= >. Now let u, v ∈ ⊗
γ∈Γ τγ such that

u ∧ v ≤
⊗

γ∈Γ

τγ .

It is to be shown that either u ≤ ¢β∈Bbβ or v ≤ ¢β∈Bbβ . We assume the contrary, namely we assume that

u � ¢β∈Bbβ , v � ¢β∈Bbβ .

Hence there exist basic L-open subsets, ∃£n1
i=1 uδi , £n2

j=1vζj
satisfying the following constraints:

£n1
i=1uδi ≤ u, £n2

j=1vζj ≤ v,

£n1
i=1uδi � ¢β∈Bbβ , £n2

j=1vζj
� ¢β∈Bbβ .

(£n1
i=1uδi) ∧

(
£n2

j=1vζj

) ≤ ¢β∈Bbβ .

By adding finite number of > factors to either £n1
i=1uδi or £n2

j=1vζj or both as needed and reindexing, the uδis
and vζj

s can be given a common (finite) set of indices; and so W.L.O.G. we may rewrite £n1
i=1uδi

, £n2
j=1vζj

as £m
k=1uκk

, £m
k=1vκk

, respectively. By the associativity of ∧, it follows that

(£m
k=1uκk

) ∧ (£m
k=1vκk

) = £m
k=1 (uκk

∧ vκk
) ,

and so we have that
£m

k=1 (uκk
∧ vκk

) ≤ ¢β∈Bbβ .

Since {(Xγ , τγ) : γ ∈ Γ} is prime separated, it follows that ∃ q = 1, ..., m such that

uκq ∧ vκq ≤ bκq ,

where uκq is one of the original uδis, vκq is one of the original vζj s, and bκq is one of the original bβs. Now bκq

is prime, and so either uκq ≤ bκq or vκq ≤ bκq ; W.L.O.G., say, uκq ≤ bκq . Let a point 〈xγ〉γ∈Γ ∈
∏

γ ∈Γ
Xγ

be given. Then

(£n1
i=1uδi) 〈xγ〉γ∈Γ =

n1∧

i=1

uδi (xδi) ≤ uκq

(
xκq

)

≤ bκq

(
xκq

) ≤
∨

β∈B

bβ (xβ)

= (¢β∈Bbβ) 〈xγ〉γ∈Γ ,

a contradiction to the contrary assumption made above. Hence ¢β∈Bbβ ∈ Pr
(⊗

γ∈Γ τγ

)
. The second

assertion follows from 5.5. 2

Lemma 5.6 justifies the terminology “prime separation” in 5.3(3) and subsequently throughout the paper.
It should be noted that under certain conditions, 5.6 has a converse so that prime L-open sets in the products
are precisely the cross sums of prime L-open subsets—see 7.2.2 below.

5.7 Example Classes for Separation and Normalization Conditions. Since hypernormalized is the
strongest normalization condition considered in this paper and implies all the separation conditions, then it
suffices to build classes of hypernormalized classes; and hence our attention is primarily on these kinds of
L-topological spaces.

5.7.1 Example Class Generated by Gχ (Subsection 2.4). All the L-topological spaces in G→χ |Top| are
hypernormalized; equivalently, all the spaces of 2-Top are hypernormalized.

5.7.2 Example Class Preserved by LPT ◦ LΩ : L-Top → L-SobTop (Section 4). The L-soberification
functor LPT ◦ LΩ preserves normalized, conormalized, binormalized, and hypernormalized L-topological
spaces.
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Proof. To see that L-soberification preserves norms, let (X, τ) be an L-topological space and let u ∈ τ .
Then it follows that

||ΦL (u)|| =
∨

p∈Lpt(τ)

ΦL (u) (p)

=
∨

p∈Lpt(τ)

p (u)

≥
∨

x∈X

ΨL (x) (u)

=
∨

x∈X

u (x)

= ||u|| ,
where we use the fact that (ΨL)→ (X) ⊂ Lpt (τ). Hence L-soberification preserves normalized spaces. A
similar manipulation shows that L-soberification preserves conorms and hence conormalized spaces; and so
L-soberification preserves binormalized spaces.

To see that hpernormalized spaces are preserved by L-soberification, let (X, τ) be hypernormalized and
suppose b, d ∈ τ with ΦL (b) � ΦL (d). Since ΦL is isotone, it follows that b � d and hence that ∃x0 ∈
X, b (x0) = >, d (x0) = ⊥. It follows that

> = b (x0) = ΨL (x0) (b) = ΦL (b) (ΨL (x0)) ,

⊥ = d (x0) = ΨL (x0) (d) = ΦL (d) (ΨL (x0)) .

Hence, ∃p ∈ Lpt(τ) , namely p = ΨL (x0) , such that ΦL (b) (p) = > and ΦL (d) (p) = ⊥. Hence the
L-spectrum LPT (LΩ(X, τ)) is hypernormalized. 2

5.7.3 Example Class Generated by LPT ◦ Ω : Top → L-SobTop (Section 4). All the L-topological
spaces in (LPT ◦ Ω)→ |Top| are hypernormalized.
Proof. Since the L-2 soberification functor is isomorphic to the functor LPT ◦ LΩ ◦Gχ, the claim follows
from 5.7.1 and 5.7.2. 2

5.7.4 Example Class of Fuzzy Real Lines and Fuzzy Unit Intervals. Each of the alternative fuzzy
real line R∗ (L) and alternative fuzzy unit interval I∗ (L) are hypernormalized; and if L is a complete Boolean
algebra, the standard fuzzy real line R (L) and standard fuzzy unit interval I (L) are hypernormalized.
Proof. Since R∗ (L) = LPT (R, T) , I∗ (L) = LPT (R, TI) , where T is the standard topology on R and TI
is the subspace topology on I = [0, 1], the claims about R∗ (L) and I∗ (L) are an immediate consequence of
5.7.3. Now the claims for R (L) and I (L) follow from those for R∗ (L) and I∗ (L) in this way: first, from
Theorem 2.16.5(2,3) [24], we have (for L a complete Boolean algebra) that R∗ (L) is L-homeomorphic to
R (L) and I∗ (L) is L-homeomorphic to I (L); and, second, from 2.2.4(2,3) above, it is easy to show that the
L-homeomorph of a hypernormalized L-topological space is hypernormalized. 2

5.7.5 Example Class of Non-Generated Examples. We now construct typical examples of binormalized
and hypernormalized spaces which are not generated by any of the functors Gχ, LPT ◦ LΩ, LPT ◦ Ω.

1. Non-generated hypernormalized space. Let X = {x1, x2, x3} , L ∼= B4 = {⊥, α, β,>}, with
α ∧ β = ⊥, α ∨ β = >, and τ = {⊥, u,>} , where u = 〈α,>,⊥〉 , i.e.,

u (x1) = α, u (x2) = >, u (x3) = ⊥.

The following claims hold:

(a) The L-topological space (X, τ) is hypernormalized. This is clear by inspection.

(b) (X, τ) /∈ G→χ | Top|. This is clear by inspection (since u takes a value other than ⊥ or >).

(c) (X, τ) /∈ LPT→ |L-Top|. Since each output space of LPT is L-sober (4.2(8) above), it suffices
to show that (X, τ) is not L-sober; and for this, it suffices to show that ΨL is not surjective (4.1
above). Now τ is a chain of 3 elements, and from this we can see that Lpt (τ) has 4 frame maps:
the first map takes τ onto the “left-side” subchain of B4 (u 7→ α), the second takes τ onto the
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“right-side” subchain of B4 (u 7→ β), the third map takes u and > to >, and the fourth map takes
u and ⊥ to ⊥. But X has only 3 elements, so ΨL cannot be surjective (though we observe that
ΨL is injective, i.e., (X, τ) is L-T0, since u separates any two points of X from each other). 2

2. Non-generated binormalized space which is not hpernormalized. Let X = {x1, x2, x3, x4} ,
L ∼= B4,

u = 〈α,>,>,⊥〉 , v = 〈β,>,>,⊥〉 ,
and τ = {⊥, u ∧ v, u, v, u ∨ v,>} . Then (X, τ) is a binormalized space which is not hypernormalized;
clearly (X, τ) /∈ G→χ | Top| ; and (X, τ) /∈ LPT→ |L-Top| since (X, τ) is not L-T0—none of the L-open
subsets separate x2 and x3. 2

5.7.6 Summary of Example Classes. There is a rich inventory of families of generated and non-generated
hypernormalized spaces in L-Top; these families include historically important examples of L-topological
spaces; and by Lemma 5.6, such families exhibit prime-separation and their L-topological products have a
sufficiently rich supply of prime (basic) L-open subsets relative to the prime open L-subsets of the underlying
factor spaces.

6 Set-Up of Sections 7, 8, 9 and Proof of Theorem 1.6.1

This section sets up the proofs of Theorems 1.7, 1.2, 1.7.1, 1.8, and 1.9, and at the end of the section gives
the proof of Theorem 1.6.1.

Throughout this section, we have a family {(Xγ , τγ) : γ ∈ Γ} of L-topological spaces, the localic product⊕
γ∈Γ τγ is assumed L-spatial, and the goal is to prove that

⊕
γ∈Γ τγ

∼= ⊗
γ∈Γ τγ (sufficiency of 1.3). Under

these assumptions, together with the added assumption that L is M -spatial with M a subframe of L, the
last line of the proof of 1.5 in 4.4 above gives

⊕

γ∈Γ

τγ
∼=

⊗

γ∈Γ

(ΦM )→ (τγ) , (6.1)

where the right-side is an L-product topology. In the claimed proof of [2] for the sufficiency of Theorem 1.2,
it is precisely at 6.1 (but with traditional topologies) that the authors state that the proof is trivial and left
to the reader. We respectfully disagree: it is precisely at 6.1 that the proof becomes difficult and interesting.

Before analyzing why the proof after 6.1 might have seemed trivial in [2], we describe an easy logical trap,
a fallacy which we illustrate using two families {(X1, τ1) , (X2, τ2)} , {(Y1, σ1) , (Y2, σ2)} of two L-topological
spaces each. Suppose that L-topologies of the same index are order-isomorphic, i.e.,

τ1
∼= σ1, τ2

∼= σ2.

Is it necessarily the case that
τ1 ⊗ τ2

∼= σ1 ⊗ σ2 ? (6.2)

If we already knew that

τ1 ⊗ τ2
∼= τ1 ⊕ τ2, σ1 ⊗ σ2

∼= σ1 ⊕ σ2, (6.3)

then because
⊕

gives the categorical coproduct in Frm (Section 3 above), 6.2 would necessarily follow; but
6.3 is essentially what is to be proved under the assumption that the localic products in question are spatial
(or L-spatial as in the case of 1.3)! Restated, 6.2 asserts that the topological product behaves as the localic
product with respect to L-topologies that are index-wise order-isomorphic.

Now assuming we have 6.2 (extended to arbitrary indexing sets Γ), then 6.1 does indeed quickly give the
proof of 1.2 and 1.3: in the case of 1.3 with the added assumption that L is assumed M -spatial with M a
subframe of L, we have from 4.2(3) and 4.2.1(1) that ∀γ ∈ Γ, τγ

∼= (ΦM )→ (τγ); hence by 6.2 (as extended),
we would have ⊗

γ∈Γ

(ΦM )→ (τγ) ∼=
⊗

γ∈Γ

τγ , (6.4)

from which sufficiency in 1.3 would immediately follow from 6.1.
Such an easy path is not available to us: we must prove 6.4 (and its traditional counterpart for 1.2)

without the benefit of having 6.2 (extended) beforehand.
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Since we cannot logically proceed as if both
⊗

γ∈Γ (ΦM )→ (τγ) ,
⊗

γ∈Γ τγ behave as categorical products,
i.e., as localic or point-free products, we must somehow take into account the underlying carrier sets of all
these L-topologies. Now since

⊗
γ∈Γ τγ is an L-topology and M -spatial (4.2.1(1)), it follows immediately

from 4.2(3) that

(ΦM )→

⊗

γ∈Γ

τγ


 ∼=

⊗

γ∈Γ

τγ . (6.5)

Therefore to obtain 6.4, it suffices by 6.5 to obtain

(ΦM )→

⊗

γ∈Γ

τγ


 ∼=

⊗

γ∈Γ

(ΦM )→ (τγ) . (6.6)

We now consider the underlying carrier sets and prove 6.6 (under certain conditions) by applying 2.4.2(3)
above after first showing that the following two L-topological spaces are L-homeomorphic:


Mpt


⊗

γ∈Γ

τγ


 , (ΦM )→


⊗

γ∈Γ

τγ





 ,


∏

γ∈Γ

Mpt (τγ) ,
⊗

γ∈Γ

(ΦM )→ (τγ)


 .

In effect, we are going to prove (under certain conditions) that the composition MPT ◦ MΩ preserves
categorical products, and the difficulty in doing this lies in the fact that MΩ need not preserve categorical
products.

We now construct a ground map

fM :


Mpt


⊗

γ∈Γ

τγ


 , (ΦM )→


⊗

γ∈Γ

τγ





 →


∏

γ∈Γ

Mpt (τγ) ,
⊗

γ∈Γ

(ΦM )→ (τγ)


 .

(6.7)

Let p :
⊗

γ∈Γ τγ → M be a frame map, consider the (restricted) L-preimage operators (2.2 above)

π←β : τβ →
⊗

γ∈Γ

τγ

of the projections—which are all frame maps from factor topologies to the product topology (i.e., the pro-
jections are L-continuous), and put

pγ = p ◦ (πγ)←L , fM (p) = 〈pγ〉γ∈Γ .

Clearly fM is a well-defined mapping. Thus for each subframe M of L for which L is M -spatial, we have
such a map fM .

6.8 Lemma. The map fM of 6.7 is injective.

Proof. Let p 6= q in Mpt
(⊗

γ∈Γ τγ

)
. Then ∃u ∈ ⊗

γ∈Γ τγ , p (u) 6= q (u) . Since M is a subframe of L,
the first infinite distributive law implies that u is constructed as a join of meets of subbasic L-open subsets.
Hence ∃β ∈ Γ, ∃uβ ∈ τβ ,

pβ (uβ) = p
(
(πγ)←L (uβ)

) 6= q
(
(πγ)←L (uβ)

)
= qβ .

It follows that pβ 6= qβ and
fM (p) = 〈pγ〉γ∈Γ 6= 〈qγ〉γ∈Γ = fM (q) . 2

6.9 Lemma. The map fM of 6.7 is L-continuous.
Proof. To show that fM is L-continuous, it suffices to show that fM is “subbasic L-continuous” (Theorem
3.2.6 of [23]), i.e., that the (Zadeh) preimage of each subbasic open L-subset is an open L-subset. To that
end, let v be a subbasic open L-subset of

⊗
γ∈Γ (ΦM )→ (τγ) . This means that ∃β ∈ Γ, ∃ v̂ ∈ τβ ,

v = (πβ)←L (ΦM (v̂)) .
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Now let p ∈ Mpt
(⊗

γ∈Γ τγ

)
. Then

(fM )←L (v) (p) = (fM )←L
(
(πβ)←L (ΦM (v̂))

)
(p) =

(
(πβ)←L (ΦM (v̂))

)
(fM (p))

=
(
(πβ)←L (ΦM (v̂))

) 〈pγ〉γ∈Γ = (ΦM (v̂))
(
πβ 〈pγ〉γ∈Γ

)

= (ΦM (v̂)) (pβ) = pβ (v̂)
=

(
p ◦ (πβ)←L

)
(v̂) = p

(
(πβ)←L (v̂)

)

= ΦM

(
(πβ)←L (v̂)

)
(p) ,

which means that
(fM )←L (v) = ΦM

(
π←β (v̂)

)
.

But (πβ)←L (v̂) is a subbasic open L-subset in
⊗

γ∈Γ τγ , so that

(fM )←L (v) = ΦL

(
(πβ)←L (v̂)

) ∈ Φ→L


⊗

γ∈Γ

τγ


 .

Hence fM is subbasic L-continuous and therefore L-continuous. 2

6.10 Lemma. The map fM of 6.7 is relatively L-open in the sense of 2.4.1(2).

6.10.1 Sublemma. Let a locale A have a subbasis S in the sense that A comprises all joins of finite meets
of members of S. Then for each subframe M of L, (ΦM )→ (S) is a subbasis of the L-topology (ΦM )→ (A).
Proof of Sublemma. This is a consequence of ΦM being a frame map and M being a subframe of L. 2

Proof of 6.10. Since fM is injective (6.8), it suffices by 2.4.2(3) to show that fM is “subbasic L-open” with
respect to its image. Let u ∈ (ΦM )→

(⊗
γ∈Γ τγ

)
be subbasic L-open. By 6.10.1, ∃β ∈ Γ, ∃uβ ∈ τβ such

that
u = ΦM

(
(πβ)←L (uβ)

)
.

Let 〈pγ〉γ∈Γ ∈ ∏
γ∈Γ Mpt (τγ) such that p ∈ Mpt

(⊗
γ∈Γ τγ

)
is the unique point with fM (p) = 〈pγ〉γ∈Γ.

Then 2.2.1(3) implies
((fM )→L (u))

(
〈pγ〉γ∈Γ

)
= u (p) ,

It now follows that

((fM )→L (u)) (〈pγ〉γ∈Γ) = u (p)
=

(
ΦM

(
(πβ)←L (uβ)

))
(p)

= p
(
(πβ)←L (uβ)

)

=
(
p ◦ (πβ)←L

)
(uβ)

= (fM )→L (p)β (uβ)
= pβ (uβ)
= (ΦM (uβ)) (pβ)

= (ΦM (uβ))
(
πβ

(
〈pγ〉γ∈Γ

))

= (ΦM (uβ)) (πβ (fM (p)))
=

(
(πβ)←L (ΦM (uβ))

)
(fM (p)) .

Hence,
((fM )→L (u)) (fM (p)) = (πβ)←L (ΦM (uβ)) (fM (p)) ,

and so

((fM )→L (u))| (fM )→(Mpt(Nγ∈Γ τγ)) = (πβ)←L (ΦM (uβ))| (fM )→(Mpt(Nγ∈Γ τγ))

∈

⊗

γ∈Γ

Φ→M (τγ)



| (fM )→(Mpt(Nγ∈Γ τγ))

.
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Therefore fM is relatively L-open. 2

6.11 Lemma (set-up wrap-up). Let {(Xγ , τγ) : γ ∈ Γ} be a family of L-topological spaces with
⊕

γ∈Γ τγ

being L-spatial. For each M a subframe of L such that L is M -spatial, the map

fM :


Mpt


⊗

γ∈Γ

τγ


 , (ΦM )→


⊗

γ∈Γ

τγ





 →


∏

γ∈Γ

Mpt (τγ) ,
⊗

γ∈Γ

(ΦM )→ (τγ)




defined between 6.7 and 6.8 above is an L-embedding. Hence, if fM is surjective, then fM is an L-
homeomorphism and ⊕

γ∈Γ

τγ
∼=

⊗

γ∈Γ

τγ .

Restated, under the conditions that M is a subframe of L such that L is M -spatial and that fM is surjective,
1.3 holds:

⊕
γ∈Γ τγ

∼= ⊗
γ∈Γ τγ if and only if

⊕
γ∈Γ τγ is L-spatial.

Proof. Conjoin 6.8, 6.9, 6.10, together with 2.4.1(3); and the restatement also uses 1.4 (see 4.3). 2

6.12 Proof of Theorem 1.6.1. We satisfy 6.11 above. First, choose M = L (recall 4.2.1(1)), and let

〈pγ〉γ∈Γ ∈
∏

γ∈Γ

Lpt (τγ) .

Then the L-S0 condition says that ∃ 〈xγ〉γ∈Γ ∈
∏

γ∈Γ Xγ such that

∀γ ∈ Γ, ΨL (xγ) = pγ .

So we set
p ≡ ΨL

(
〈xγ〉γ∈Γ

)

in Lpt
(⊗

γ∈Γ τγ

)
. Now fix β ∈ Γ and uβ ∈ τβ . Then

(fL (p))β (uβ) =
(
p ◦ π←β

)
(uβ)

= p
(
π←β (uβ)

)

= ΨL

(
〈xγ〉γ∈Γ

) (
π←β (uβ)

)

= π←β (uβ)
(
〈xγ〉γ∈Γ

)

= (uβ ◦ πβ)
(
〈xγ〉γ∈Γ

)

= uβ

(
πβ

(
〈xγ〉γ∈Γ

))

= uβ (xβ)
= ΨL (xβ) (uβ)
= pβ (uβ) .

It follows that f (p) = 〈pγ〉γ∈Γ and that f is surjective. 2

The L-S0 axiom in the assumption of 1.6.1 is further weakened to q-L-S0 in the presence of other
assumptions in 1.7.1—see its proof in Section 8 below.

7 Proofs of Theorem 1.7 and Theorem 1.2

This section gives the proof of Theorem 1.7 and derives Theorem 1.2 as a corollary of Theorem 1.7, and
then outlines the proof of Theorem 1.2 independently of Theorem 1.7 to show how the proofs of Theorem
1.7 and Theorem 1.2 were discovered beyond the common setup of 1.7, 1.8, 1.9 given in Section 6 based on
correspondence with Prof. Johnstone. In the process, this section gives the first complete proof of Theorem
1.2 known to the authors. Finally, the proofs of Section 6 and this section together yield characterizations
of prime L-open subsets of certain L-topological product spaces and characterizations of prime open and
irreducible closed subsets of traditional product spaces—see 7.2.2 and 7.4.6.

We begin by collecting and applying some notions from [9].
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7.1 Lpt (A), Pt (A), prime open sets, irreducible closed sets

An element c 6= > of a lattice A is prime if ∀a, b ∈ A with a ∧ b ≤ c, a ≤ b or b ≤ c; and we put Pr (A) for
the set of all primes of A. If (X, τ) is an L-topological space, Pr (τ) comprises the prime L-open subsets
of (X, τ) ; if (X, T) is a topological space, Pr (T) comprises the prime open subsets of (X, T) ; for (X, T) we
have the notion of an irreducible closed subset—a closed subset F of a topological space (X, T) is irreducible
if it cannot be written as a union of proper closed subsets of F ; and letting F be the collection of closed
subsets, we write Irred (F) for the family of all irreducible closed subsets.

Recalling the ideas of Section 4 above, we now let A ∈ |Loc| and put

ϕ
L

: Lpt (A) → Pr (A) by ϕ
L

(p) = ap ≡
∨

p(a) =⊥
a,

ψ
L

: Pr (A) → Lpt (A) by ψ
L

(a) = pa,

where

pa : A → 2 ↪→ L, where pa (b) =
{ ⊥, b ≤ a,
>, otherwise .

Note that Lpt (A) has the ordering of mappings induced from the order of L and Pr (A) has the relative
ordering from A. Also, if B is a poset, then Bop indicates the poset with B as the carrier set and the dual
order.

7.1.1 Proposition. The following hold:

1. ϕ
L
aop ψ

L
, where “aop” indicates that Pr(A)op replaces Pr (A).

2. ϕ
L
◦ ψ

L
= idPr(A)op (the adjunction of (1) is an iso-coreflection).

3.
[∀A ∈ |Frm| , ψ

L
◦ ϕ

L
= idLpt(A)

] ⇔ L = 2.

4. ψL ◦ ϕL = idLpt(A) need not hold.

Proof. Ad (1,2). We have ϕ
L

and ψ
L

are antitone and

(ϕL ◦ ψL) (a) = apa =
∨

pa(c) =⊥
c = a.

Also,
(ψL ◦ ϕL) (p) = ψL (ap) = pap .

Now let a ∈ A. First suppose a ≤ ap. Then

p(a) ≤ p(ap) = ⊥ = pap (a) .

Second, suppose a � ap. Then
p (a) ≤ > = pap (a) .

Thus p ≤ pap . We so far have

ϕ
L
◦ ψ

L
= idPr(A)op , ψ

L
◦ ϕ

L
≥ idLpt(A).

Replacing Pr(A) by Pr(A)op yields that ϕL and ψL are isotone and that the display just above still holds.
So ϕL aop ψL .

Ad (3). Sufficiency follows noting in the proof of (1) that when a � ap, the definition of ap implies
p (a) 6= ⊥; and p being 2-valued then forces p (a) = > = pap (a) . For necessity, assume |L| > 2. Then
∃α ∈ L − {⊥,>} and A ≡ {⊥, α,>} is a subframe of L. Choose p : A → A ↪→ L to be idA. Note ap = ⊥
and that

pap ≡ p⊥ : A → L by p⊥ (b) =
{ ⊥, b = ⊥,
>, otherwise .

Clearly pap 6= p.
Ad (4). Immediate corollary of the necessity of (3). 2

7.1.2 Corollary. The following hold:
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1. Pr(A) is bijective with Pt (A), and this bijection is an antitone isomorphism.

2. Pr (T) is bijective with Irred (K), and this bijection is an antitone isomorphism.

3. Irred (K) is order-isomorphic to Pt (T).

Proof. (1) is a consequence of 7.1.1(1–3) with L = 2. Now (2) follows from sending prime open set U to
X − U and then sending irreducible closed F back to X − F . And (3) follows from (1) and (2). 2

7.2 Proof of Theorem 1.7

Necessity of 1.7 has been given by 1.4. As for sufficiency, 6.11 above shows that the proof of sufficiency is
finished once the surjectivity of the map

fM : Mpt


⊗

γ∈Γ

τγ


 →

∏

γ∈Γ

Mpt (τγ)

of 6.7 is established: surjectivity would make fM an L-homeomorphism, which would then imply
⊕

γ∈Γ

τγ
∼=

⊗

γ∈Γ

(ΦM )→ (τγ) (recall 6.1)

∼= (ΦM )→

⊗

γ∈Γ

τγ


 (fM an L-homemomorphism, 2.4.2(3))

∼=
⊗

γ∈Γ

τγ (6.5)

under the assumption that L is M -spatial for some M a subframe of L.
The standing assumptions for 1.7 are that the family {(Xγ , τγ) : γ ∈ Γ} of L-topological spaces is prime

separated and that L is spatial. Since L is 2-spatial, we set M = 2. To show that fM is surjective, we let
〈qγ〉γ∈Γ ∈

∏
γ∈Γ Mpt (τγ). We must find p ∈ Mpt

(⊗
γ∈Γ τγ

)
such fM (p) = 〈qγ〉γ∈Γ. Since M = 2, 7.1.2

applies to say that ∀γ ∈ Γ, ∃uqγ ∈ Pr (τγ) , ΦM (qγ) = uqγ . Choosing B = Γ and invoking prime separation,
it follows from 5.6 that

u ≡ ¢γ∈Γuqγ ∈ Pr


⊗

γ∈Γ

τγ


 .

Applying 7.1.2 again, ∃ p ≡ pu ∈ Mpt
(⊗

γ∈Γ τγ

)
. We claim that fM (p) = 〈qγ〉 . It suffices to show that

∀β ∈ Γ, pβ ≡ fM (p)β = qβ , so fix β ∈ Γ. Now it is the case that ∀w ∈ τβ ,

pβ (w) = p
(
(πβ)←L (w)

)
= ⊥ ⇔ (πβ)←L (w) ≤ u,

qβ (w) = ⊥ ⇔ w ≤ uqβ
.

Let us assume that pβ (w) = ⊥, namely, that (πβ)←L (w) ≤ u. Choosing {β} as the finite subfamily of Γ and
putting wδ ≡ w for δ ∈ {β} , we have that

£δ∈{β}wδ = (πβ)←L (w) ≤ u = ¢γ∈Γuqγ ;

and now prime separation directly applies via 5.3(3) to say that

w ≡ wβ ≤ uqβ
.

It follows that qβ (w) = ⊥. On the other hand, assume qβ (w) = ⊥, namely that w ≤ uqβ
, and let 〈xγ〉γ∈Γ ∈∏

γ∈Γ Xγ . Then
(
(πβ)←L (w)

) 〈xγ〉γ∈Γ = w (xβ) ≤ uqβ
(xβ)

≤
∨

γ∈Γ

uqγ (xγ) =
(
¢γ∈Γuqγ

) 〈xγ〉γ∈Γ

= u 〈xγ〉γ∈Γ .
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It follows that pβ (w) = ⊥. Altogether, we have that pβ (w) = ⊥ ⇔ qβ (w) = ⊥. Hence fM (p) = 〈qγ〉γ∈Γ ,
concluding the proof of Theorem 1.7. 2

7.2.1 Corollary. Let {(Xγ , τγ) : γ ∈ Γ} be a family of prime separated L-topological spaces (AC if
Γ nonfinite). Then

⊕
γ∈Γ τγ

∼= ⊗
γ∈Γ τγ if and only if

⊕
γ∈Γ τγ is L-spatial under each of the following

conditions

1. L is completely distributive.

2. L is order-isomorphic to a traditional powerset.

3. L is finite (and a frame).

4. L is a complete chain (such as I = [0, 1]).

Proof. For (1), let L be completely distributive. Then by Exercise 2.30(3) of [4], L is I-spatial in the sense
of 4.1 above, where I = [0, 1]. But I is 2-spatial: if a < b, put p : I → 2 by p (t) = 0 ⇔ t ≤ a; then p
is a frame map separating a, b; and so Φ is injective. It now follows from 4.2(4) and 4.2.1(1) above that L
is 2-spatial; hence Theorem 1.7 can be applied. Now (2) and (3) follow from (1), and the proof of (4) is
contained in the proof of (1). 2

7.2.2 Corollary (characterization of L-prime open sets). Let {(Xγ , τγ) : γ ∈ Γ} be a family of
prime separated L-topological spaces (AC if Γ nonfinite) and L be spatial. Then an L-open subset in the
L-topological product space

(∏
γ∈Γ Xγ ,

⊗
γ∈Γ τγ

)
is prime if and only if it is the cross sum of prime L-open

subsets from the factor spaces.

Proof. Sufficiency is given by 5.6 above. As for necessity, let u ∈ Pr
(⊗

γ∈Γ τγ

)
. Then, referring to 7.1.2

and the proof of 1.7 given above, we have these unique determinations: u determines p ∈ Mpt
(⊗

γ∈Γ τγ

)
,

p determines 〈pγ〉γ∈Γ ∈
∏

γ∈Γ Mpt (τγ) , and each pγ determines uγ ∈ Pr (τγ). Now since fM is bijective, we
also have these unique determinations: p is uniquely determined by 〈pγ〉γ∈Γ and hence as the frame mapping
uniquely determined by ¢γ∈Γuγ . This forces u = ¢γ∈Γuγ . 2

7.3 Proof of Theorem 1.2

Let {(Xγ,Tγ) : γ ∈ Γ} be a collection of ordinary topological spaces (AC if Γ nonfinite). We want to show
that

⊕
γ∈Γ Tγ

∼= ⊗
γ∈Γ Tγ if and only if

⊕
γ∈Γ Tγ is spatial. First, we choose L = 2 and apply Gχ at the

fibre level to each Tγ (Subsection 2.4) and note that we now have a family of prime-separated 2-topological
spaces. From 7.2.1(4), we have that

⊕
γ∈Γ Gχ (Tγ) ∼= ⊗

γ∈Γ Gχ (Tγ) if and only if
⊕

γ∈Γ Gχ (Tγ) is spatial.
Now each

Gχ (Tγ) ∼= Tγ .

Since
⊕

gives the categorical product in Loc, this insures that
⊕

γ∈Γ

Gχ (Tγ) ∼=
⊕

γ∈Γ

Tγ .

On the other hand, Gχ at the functorial level is an isomorphism and preserves products, so at the fibre level,

⊗

γ∈Γ

Gχ (Tγ) ∼=
⊗

γ∈Γ

Tγ .

Theorem 1.2 now follows. 2

7.4 Discovering proofs of Theorems 1.2 and 1.7

The proof of Theorem 1.7, particularly the surjectivity of the map fM , was discovered by first writing a
complete proof of Theorem 1.2 and then deciding how to write the generalization of its proof needed for
Theorem 1.7; and what is key for the proof of surjectivity in 1.7 is the idea of cross sums of prime open sets.
But how were cross sums of prime open sets discovered?
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Since we now have a complete proof of 1.2 in 7.3 above and our purpose is simply the story of discovery,
this subsection considers two traditional topological spaces (X1, T1) , (X2, T2) in order to streamline the
situation and focus on the ideas. Further, that focus will be narrowed to studying the surjectivity of the
map

fM : (Pt (T1 ⊗ T2) , Φ→ (T1 ⊗ T2)) → (Pt (T1)× Pt (T1) , Φ→ (T1)⊗ Φ→ (T2)) ,

where M = 2. Let (q1,q2) ∈ Pt (T1) × Pt (T1) , and note from 7.1.2 we have uniquely determined prime
open sets Vq1 ∈ Pr (T1) , Vq2 ∈ Pr (T2). It is most natural to consider cross products, but the problem
is that the cross product Vq1 × Vq2 need not be in Pr (T1 ⊗ T2) . However, we also know from 7.1.2 that
X1−Vq1 , X2−Vq2 are irreducible closed subsets in their respective spaces. The next three results, based on
a letter to the second author from Prof. Johnstone in 1987, establish that cross products of irreducible closed
subsets are irreducible closed subsets of the topological product space, proved by repackaging the notion of
irreducible closed subsets and working in the relative product topology. And then we prove Theorem 1.2
(again).

7.4.1 Lemma (relative product topologies). Let A ⊂ X1, B ⊂ X2, and let (T1 ⊗ T2) (A×B) be the
relative topology from the product space on A×B, T1 (A) be the relative topology from (X1, T1) on A, and
T2 (B) be the relative topology from (X2,T2) on B. Then

(T1 ⊗ T2) (A×B) = T1 (A)⊗ T2 (B) .

Proof. Since cross product and intersection commute, the standard basis of (T1 ⊗ T2) (A×B) is contained
in the standard basis of T1 (A)⊗ T2 (B) ; and hence

(T1 ⊗ T2) (A×B) ⊂ T1 (A)⊗ T2 (B) .

On the other hand, the continuity of the projections insure that the standard subbasis of T1 (A)⊗T2 (B) is
contained in (T1 ⊗ T2) (A×B) ; and hence

(T1 ⊗ T2) (A×B) ⊃ T1 (A)⊗ T2 (B) . 2

7.4.2. Lemma (irreducible closed subspaces). Let (X, T) be an ordinary topological space and F be
a closed subset of X with relative topology T (F ). Then F is irreducible closed in (X, T) if and only if
∀O,W ∈ T (F ) ,

O 6= ∅, W 6= ∅ ⇒ O ∩W 6= ∅.

Proof. For necessity, assume F is irreducible closed and let O, W ∈ T (F ) with O 6= ∅, W 6= ∅. Now if
O = F, then W ⊂ F and ∅ 6= W = O ∩W ; and similarly if W = F. So suppose O,W $ F and put

F1 = F −O, F2 = F −W.

Then F1, F2 are closed subsets of F, F1 6= ∅ 6= F2, and F1 6= F 6= F2. Now suppose O ∩W = ∅. Then

F = F − (O ∩W ) = (F −O) ∪ (F −W ) = F1 ∪ F2,

a contradiction to F being irreducible. For sufficiency, deny irreducibility of F. So ∃ nonempty, proper
closed subsets F1, F2 such that F = F1 ∪ F2. Put O = F − F1, W = F − F2. Then O, W ∈ T (F ) with
O 6= ∅, W 6= ∅ . Hence O ∩W 6= ∅. But

∅ = F − (F1 ∪ F2) = (F − F1) ∩ (F − F2) = O ∩W,

a contradiction. 2

7.4.3 Lemma (products of irreducible closed subsets). Let A be an irreducible closed subset of
(X1, T1) and B be an irreducible closed subset of (X2,T2) . Then A × B is an irreducible closed subset of
(X1 ×X2,T1 ⊗ T2).

Proof. Let O,W ∈ (T1 ⊗ T2) (A×B) with O 6= ∅, W 6= ∅. Then ∃ (x, y) ∈ O, ∃ (z, w) ∈ W. By 7.4.1,
∃U1 × U2, V1 × V2 ∈ T1 (A)⊗ T2 (B) such that

(x, y) ∈ U1 × U2 ⊂ O, (z, w) ∈ V1 × V2 ⊂ W.
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Since each of U1, U2, V1, V2 is nonempty, the irreducibility of each of A, B along with 7.4.2 implies that

U1 ∩ V1 6= ∅ 6= U2 ∩ V2.

Hence ∃ x̂ ∈ U1 ∩ V1, ŷ ∈ U2 ∩ V2, and

(x̂, ŷ) ∈ (U1 ∩ V1)× (U2 ∩ V2)
= (U1 × U2) ∩ (V1 × V2)
⊂ O ∩W.

So O ∩W 6= ∅; and by 7.4.2, A×B is an irreducible closed subset of (X1 ×X2,T1 ⊗ T2) . 2

7.4.4 Proof of Theorem 1.2. Returning to the paragraph above 7.4.1, we have the irreducible closed
subsets X1 − Vq1 , X2 − Vq2 . By 7.4.3,

(X1 − Vq1)× (X2 − Vq2)

is an irreducible closed subset of (X1 ×X2, T1 ⊗ T2) . Then by 7.1.2,

(X1 ×X2)− [(X1 − Vq1)× (X2 − Vq2)] ∈ Pr (T1 ⊗ T2) ;

and then we have
p ≡ p(X1×X2)−[(X1−Vq1)×(X2−Vq2)] ∈ Pt (T1 ⊗ T2) .

It can be shown that fM (p) = (q1, q2), making fM surjective and a homeomorphism, which, via the set-up
of Section 6, yields Theorem 1.2. 2

7.4.5 Discussion (reconciliation with Subsection 6.3). Generalizing 7.4.4 to the L-valued case is
problematic since 7.4.4 uses closed subsets and the full properties of Boolean complementation (both double
negation and excluded middle) and L need not be a Boolean algebra. However, we have the simple calculation:

(X1 ×X2)− [(X1 − Vq1)× (X2 − Vq2)] =
(Vq1 ×X2) ∪ (X1 × Vq2) = Vq1 + Vq2 .

And thus appears the notion of cross sums of prime open sets, a graph of which for two summands can be
seen on p. 84 of [28], though that is not the purpose of [28] and the notion of cross sums as prime open
sets in a product topology is not given there. Cross sums of prime open sets can be extended to L-valued
topology without Boolean complementation, this extension requiring the previous sections of this paper. The
following corollary of this line of discussion expands 7.2.2 above for traditional product topologies.

7.4.6 Corollary (characterizations of prime open sets and irreducible closed sets). Let {(Xγ , Tγ) :
γ ∈ Γ} ⊂ |Top| be a family of traditional topological spaces. The following hold:

1. The prime open subsets of
(∏

γ∈Γ Xγ ,
⊗

γ∈Γ Tγ

)
are precisely the cross sums of prime open subsets

of the factor spaces.

2. The irreducible closed subsets of
(∏

γ∈Γ Xγ ,
⊗

γ∈Γ Tγ

)
are precisely the cross products of irreducible

closed subsets of the factor spaces.

Proof. From 7.2.2 comes (1) (setting L = 2 and invoking Gχ) and from (1) comes (2). 2

8 Proof of Theorem 1.7.1

We appeal to Lemma 6.11 under the assumptions that {(Xγ , τγ) : γ ∈ Γ} is normalized and prime separated
and each space is q-L-S0. Choosing M = L, we are to show that the map

fL : Lpt


⊗

γ∈Γ

τγ


 →

∏

γ∈Γ

Lpt (τγ)

is surjective. Let 〈pγ〉γ∈Γ ∈
∏

γ∈Γ Lpt (τγ). There are four cases: three special cases and then the general
case.
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8.1 First special case: ∀γ, coker (pγ) = τγ − {⊥}
It follows that each pγ is 2-valued, i.e., that pγ ∈ Pt (τγ). Hence, using prime separation and 7.1.2 as they
were used in the proof of Theorem 1.7 (7.2), it can be shown

∃ p ∈ Pt


⊗

γ∈Γ

τγ


 ⊂ Lpt


⊗

γ∈Γ

τγ




such that
f2 (p) = 〈pγ〉γ∈Γ .

Since p ∈ Pt
(⊗

γ∈Γ τγ

)
, it follows fL (p) = f2 (p) , which completes the proof of this case. 2

8.2 Second special case: ∀γ, coker (pγ) 6= τγ − {⊥}
In this case the q-L-S0 axiom implies that ∀γ ∈ Γ, ∃xγ ∈ Xγ , ΨL (xγ) = pγ . It follows that the method

in the proof of Theorem 1.6.1 (4.6) may be employed here to find p ∈ LPt
(⊗

γ∈Γ τγ

)
such that fL (p) =

〈pγ〉γ∈Γ . 2

8.3 Third special case: |Γ| = 2, ∃x1 ∈ X1 with p1 = ΨL (x1) , coker(p2) = τ2 − {⊥}
Let u ∈ τ1 ⊗ τ2 − {⊥} have the form

u =
∨

α∈A

(uα1 £ uα2) ,

where each uα1 £ uα2 6= ⊥. Put
p (u) =

∨

α∈A

(p1 (uα1) ∧ p2 (uα2)) .

Then:

p (u) =
∨

α∈A

(ΨL (x1) (uα1) ∧ >)

=
∨

α∈A

uα1 (x1) .

It is convenient to note that p (u) =
∨

α∈A p1 (uα1). Finally, put p (⊥) = ⊥.
We claim that p : τ1 ⊗ τ2 → L is a well-defined map. Let

∨

α∈A

(uα1 £ uα2) = u =
∨

β∈B

(vβ1 £ vβ2)

as above for u ∈ τ1 ⊗ τ2 − {⊥} . Now {(X1, τ1) , (X2, τ2)} being normalized implies that this family is upper
projection separated (5.5(1)); and this separation condition, together with the preservation of arbitrary joins
by the Zadeh image operator π→1 of the first projection, now yields

∨

α∈A

uα1 =
∨

α∈A

π→1 (uα1 £ uα2)

= π→1

( ∨

α∈A

(uα1 £ uα2)

)

= π→1 (u)

= π→1


 ∨

β∈B

(vβ1 £ vβ2)




=
∨

β∈B

π→1 (vβ1 £ vβ2)

=
∨

β∈B

vβ1 .
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Applying the frame map p1 gives the following:

p1

( ∨

α∈A

uα1

)
=

∨

α∈A

p1 (uα1) =
∨

α∈A

ΨL (x1) (uα1)

=
∨

α∈A

uα1 (x1) =
∨

β∈B

vβ1 (x1)

=
∨

β∈B

ΨL (x1) (vβ1) =
∨

β∈B

p1 (vβ1)

= p1


 ∨

β∈B

vβ1


 .

This shows that p is well-defined.
Now to see that p preserves arbitrary nonempty joins, it suffices to let {uα}α∈A ⊂ τ1 ⊗ τ2 − {⊥}, where

each uα may be written in the form
uα =

∨

β∈Aα

(
uα

β1
£ uα

β2

)

as above. It follows that

p

( ∨

α∈A

uα

)
= p


 ∨

α∈A

∨

β∈Aα

(
uα

β1
£ uα

β2

)



= p




∨

(α,β)∈A×(Sα∈A Aα)

(
uα

β1
£ uα

β2

)



=
∨

(α,β)∈A×(Sα∈A Aα)
p1

(
uα

β1

)

=
∨

α∈A

∨

β∈Aα

p1

(
uα

β1

)

=
∨

α∈A

p (uα) .

Since p satisfies p (⊥) = ⊥ by definition, we now have that p preserves arbitrary joins.
As for finite meets, the empty case follows since

p (>) = p (>£>) = p1 (>) = >.

Given that p preserves bottom, it suffices to check the action of p on u ∧ v where u, v ∈ τ1 ⊗ τ2 − {⊥} to
conclude that p preserves all binary meets. As above, we may write

u ∧ v =
∨

α∈A

(uα1 £ uα2) ∧
∨

β∈B

(vβ1 £ vβ2)

=
∨

(α,β)∈A×B

((uα1 ∧ vβ1) £ (uα2 ∧ vβ2)) ,

so that

p (u ∧ v) =
∨

(α,β)∈A×B

p1 (uα1 ∧ vβ1)

=
∨

(α,β)∈A×B

(p1 (uα1) ∧ p1 (vβ1))

=
∨

α∈A

p1 (uα1) ∧
∨

β∈B

p1 (vβ1)

= p (u) ∧ p (v) .
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It now follows that p is a frame map, i.e., that p ∈ Lpt (τ1 ⊗ τ2) .
It remains to check that fL (p) = 〈pi〉i=1,2 . Given u ∈ τ1 and v ∈ τ2, it follows:

(p ◦ π←1 ) (u) = p (u £>) = p1 (u) ;

(p ◦ π←2 ) (v) = p (>£ v) =
{

p (>) = > = p2 (v) : v 6= ⊥
p (⊥) = ⊥ = p2 (v) : v = ⊥ = p2 (v) .

Hence fL (p) = 〈pi〉i=1,2 .

8.4 General case

We now use the three special cases in 8.1, 8.2, 8.3 above, respectively, to prove Theorem 1.7.1 in full generality.
Partition the indexing set Γ into the disjoint union ∆ ∪ E, where:

∀δ ∈ ∆, ∃xδ ∈ Xδ, pδ = ΨL (xδ) ;

∀ε ∈ E, coker ( pε) = τε − {⊥} .

If ∆ = ∅, then this case follows from 8.1 above; and if E = ∅, then this case follows from 8.2 above. So we
assume that each of ∆ and E are nonempty. Now for ∆ there is a map

hL : Lpt

(⊗

δ∈∆

τδ

)
→

∏

δ∈∆

Lpt (τδ)

from Section 6 which is surjective by 8.2 above—the prime separation condition needed in that case is
inherited by the subfamily {(Xδ, τδ) : δ ∈ ∆} since cross products and cross sums are finitely associative;
and for E there is a map

kL : Lpt

(⊗

ε∈E

τε

)
→

∏

ε∈E

Lpt (τε)

from Section 6 which is surjective by 8.1 above—the normalization condition needed in that case is trivially
inherited by the subfamily {(Xε, τε) : ε ∈ E}. Further, there is a map

gL : Lpt

(⊗

δ∈∆

τδ ⊗
⊗

ε∈E

τε

)
→

∏

δ∈∆

Lpt (τδ)×
∏

ε∈E

Lpt (τε)

from Section 6 which is surjective by 8.3 above—viewing
(∏

δ∈∆ Xδ,
⊗

δ∈∆ τδ

)
as (X1, τ1) and

(∏
ε∈E Xε,

⊗
ε∈E τε

)
as (X2, τ2) . Finally, we note that

Lpt


⊗

γ∈Γ

τγ


 = Lpt

(⊗

δ∈∆

τδ ⊗
⊗

ε∈E

τε

)
,

∏

γ∈Γ

Lpt (τγ) =
∏

δ∈∆

Lpt (τδ)×
∏

ε∈E

Lpt (τε)

and take the associated identity maps

id : Lpt


⊗

γ∈Γ

τγ


 → Lpt

(⊗

δ∈∆

τδ ⊗
⊗

ε∈E

τε

)
,

id :
∏

γ∈Γ

Lpt (τγ) →
∏

δ∈∆

Lpt (τδ)×
∏

ε∈E

Lpt (τε) .

Altogether, we now have that the map

fL : Lpt


⊗

γ∈Γ

τγ


 →

∏

γ∈Γ

Lpt (τγ)

may be written as the composition

fL = id ◦ (hL × kL) ◦ gL ◦ id,

and hence that fL is surjective. This concludes the proof of Theorem 1.7.1 from Lemma 6.11. 2
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9 Proofs of Theorem 1.8 and Theorem 1.9

Recall that 6.11 gives for each subframe M of L for which L is M -spatial an L-embedding

fM :


Mpt


⊗

γ∈Γ

τγ


 , (ΦM )→


⊗

γ∈Γ

τγ





 →


∏

γ∈Γ

Mpt (τγ) ,
⊗

γ∈Γ

(ΦM )→ (τγ)


 .

The proof of Theorem 1.7 in Subsection 6.2 instantiates 6.11 by choosing M = 2 and the proof of Theorem
1.2 instantiates 6.11 by choosing L = 2.

To obtain the proof of Theorem 1.8 from 6.11, we must prove the surjectivity of the map fM under the
conditions of Theorem 1.8. To that end, let us first consider 〈qγ〉γ∈Γ ∈

∏
γ∈Γ Mpt (τγ) under the conditions

of Theorem 1.7. Then the proof of Theorem 1.7 provides p ∈ Mpt
(⊗

γ∈Γ τγ

)
such that fM = 〈qγ〉γ∈Γ . Now

let u ∈ ⊗
γ∈Γ τγ and consider the family

Bu = {£n
i=1uγi

: n ∈ N, {γi}n
i=1 ⊂ Γ, uγi

∈ τγi
, ⊥ 6= £n

i=1uγi
≤ u} .

Since Bu comprises all basic L-open subsets inside u and p is a frame map, we have

p (u) = p
(∨

Bu

)

=
∨

£n
i=1uγi

∈Bu

p (£n
i=1uγi)

=
∨

£n
i=1uγi

∈Bu

[
n∧

i=1

qγi (uγi)

]
. (9.1)

Since fM is a bijection in Theorem 1.7 and every mapping from
⊗

γ∈Γ τγ to M that is formally defined by
9.1 satisfies fM (p) = 〈qγ〉γ∈Γ as set mappings—see Lemma 9.2 below, then it follows that each such formally

defined mapping in the context of Theorem 1.7 is a frame map in Mpt
(⊗

γ∈Γ τγ

)
and, in particular, preserves

nonempty joins. Outside the context of Theorem 1.7, what properties should a map p defined formally by
9.1 have?

9.2 Lemma. The map p :
⊗

γ∈Γ τγ → M formally defined using (9.1), namely by stipulating

p (u) =
∨

£n
i=1uγi

∈Bu

[
n∧

i=1

qγi (uγi)

]
,

has these properties:

1. The map p preserves ⊥ and >.

2. As set mappings fM (p) = 〈qγ〉γ∈Γ .

3. The map p is isotone.

4. The map p preserves finite meets.

Altogether, the map p :
⊗

γ∈Γ τγ → M is a SLat⊥ (∧) morphism such that fM (p) = 〈qγ〉γ∈Γ as set mappings.

Proof. Ad (1). Since each member of B⊥ cannot be ⊥, it follows that B⊥ = ∅ and that

p (⊥) =
∨

£n
i=1uγi

∈∅

[
n∧

i=1

qγi (uγi)

]
= ⊥;

and since B> includes > as, say, (πβ)←L
(>β

)
, where >β is the whole space in τβ , it follows

p (>) ≥ qβ

(>β

)
= >.
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Ad (2). It suffices to show that ∀β ∈ Γ, pβ = qβ , where pβ = p ◦ (πβ)←L . Let vβ ∈ τβ . If vβ = ⊥β , then
(1) and qβ being a frame map imply

p (vβ) = ⊥ = qβ (vβ) ;

and if vβ 6= ⊥β , then (πβ)←L (vβ) 6= ⊥, so that (πβ)←L (vβ) ∈ B(πβ)←
L

(vβ) and

pβ (vβ) = p
(
(πβ)←L (vβ)

)

=
∨

£n
i=1uγi

∈B(πβ)←
L

(vβ)

[
n∧

i=1

qγi
(uγi

)

]

= qβ (vβ) ,

noting that the singleton cross product £βvβ is precisely (πβ)←L (vβ) .
Ad (3). If u ≤ v, then Bu ⊂ Bv, and so p (u) ≤ p (v) .
Ad (4). We first need two sublemmas.

9.2.1 Sublemma. Let £m
j=1vβj

be a non-bottom, basic L-open member of
⊗

γ∈Γ τγ . Then

p
(
£m

j=1uβj

)
=

m∧

j=1

qβj

(
vβj

)
.

Proof of Sublemma. On one hand, £m
j=1uβj ∈ B£m

j=1uβj
, so that

p
(
£m

j=1vβj

) ≥
m∧

j=1

qβj

(
vβj

)
.

On the other hand, let £n
i=1wγi ∈ B£m

j=1uβj
. This means

⊥ 6= £n
i=1wγi ≤ £m

j=1vβj

By adding a finite number of factors of > to either or both basic L-open sets, we may W.L.O.G. rewrite the
above display as

⊥ 6= £l
k=1wδk

≤ £l
k=1vδk

.

Product separation now says that ∀k = 1, ...l,

wδk
≤ vδk

, qδk
(wδk

) ≤ qδk
(vδk

) ,

so that
l∧

k=1

qδk
(wδk

) ≤
l∧

k=1

qδk
(vδk

) =
m∧

j=1

qβj

(
vβj

)
.

It follows

p
(
£m

j=1vβj

) ≤
m∧

j=1

qβj

(
vβj

)
,

concluding the proof of the sublemma. 2

9.2.2 Sublemma. Let £m
j=1uβj , £m

j=1vβj be non-bottom, basic L-open members of
⊗

γ∈Γ τγ . Then

p
((

£m
j=1uβj

) ∧ (
£m

j=1vβj

))
= p

(
£m

j=1uβj

) ∧ p
(
£m

j=1uβj

)
.

Proof of Sublemma. This follows from 9.2.1, the associativity of ∧, and the qβj ’s preserving binary meets.
2

Resumption of Ad (4) of 9.2. Let u, v ∈ ⊗
γ∈Γ τγ . Since p is isotone by (3), we have that

p (u ∧ v) ≤ p (u) ∧ p (v) .
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For the reverse direction, let £m
i=1uαi ∈ Bu, £n

j=1vβj ∈ Bv; and as in the proof of 9.2.1, we W.L.O.G. rewrite
these, respectively, as £l

k=1uδk
, £l

k=1vδk
. Now 9.2.2 says that

p
(
£l

k=1uδk

) ∧ p
(
£l

k=1vδk

)
= p

((
£l

k=1uδk

) ∧ (
£l

k=1vδk

))

= p
(
£l

k=1 (uδk
∧ vδk

)
)
.

If £l
k=1 (uδk

∧ vδk
) = ⊥, then p

(
£l

k=1 (uδk
∧ vδk

)
)

= ⊥ by (1), in which case

p
(
£l

k=1uδk

) ∧ p
(
£l

k=1vδk

)
= p

(
£l

k=1 (uδk
∧ vδk

)
)

= ⊥ = p (u ∧ v) ;

and if £l
k=1 (uδk

∧ vδk
) 6= ⊥, then £l

k=1 (uδk
∧ vδk

) ∈ Bu∧v, in which case, using 9.2.1 and 9.2.2,

p
(
£l

k=1uδk

) ∧ p
(
£l

k=1vδk

)
= p

(
£l

k=1 (uδk
∧ vδk

)
)

=
l∧

k=1

qδk
(uδk

∧ vδk
)

≤
∨

£n
i=1wγi

∈Bu∧v

[
n∧

i=1

qγi
(wγi

)

]

= p (u ∧ v) .

Now invoking 9.2.1 yet again, we now have that

p (u ∧ v) = u.b.





M∧

i=1

qαi (uαi) ∧
n∧

j=1

qβi (vβi) : £m
i=1uαi ∈ Bu, £n

j=1vβj ∈ Bv



 ;

and hence, fixing £n
j=1vβj ∈ Bv, that

p (u ∧ v) = u.b.





M∧

i=1

qαi (uαi) ∧
n∧

j=1

qβi (vβi) : £m
i=1uαi ∈ Bu



 ,

and so by the frame law that

p (u) ∧
n∧

j=1

qβi (vβi) =


 ∨

£m
i=1uαi

∈Bu

(
M∧

i=1

qαi (uαi)

)
 ∧

n∧

j=1

qβi (vβi)

=
∨

£m
i=1uαi

∈Bu




M∧

i=1

qαi (uαi) ∧
n∧

j=1

qβi (vβi)




≤ p (u ∧ v) .

Similarly, it now follows that

p (u) ∧ p (v) = p (u) ∧

 ∨

£n
j=1vβj

∈Bv

n∧

j=1

qβi (vβi)




=
∨

£n
j=1vβj

∈Bv


p (u) ∧

n∧

j=1

qβi (vβi)




≤ p (u ∧ v) .

This completes the proof that p preserves binary meets; and, invoking (1), we now have p preserves finite
meets. 2

Motivated by 3.3 and the discussion above 9.2, let {(Xγ , τγ) : γ ∈ Γ} be a collection of L-topological
spaces, where L is a frame, M is a subframe of L, and R is a binary relation on M given by

R =





(∨
α∈A p (aα) , p

(∨
α∈A aα

))
: {aα}α∈A ⊂

⊗
γ∈Γ τγ ,

〈qγ〉γ∈Γ ∈
∏

γ∈Γ Mpt (τγ) , p ∈ SLat⊥ (∧)
(⊗

γ∈Γ τγ ,M
)

,

fM (p) = 〈qγ〉γ∈Γ





,

(9.3)
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and let M/R be the quotient frame of M by R in the sense of 3.3 with nucleus νR : M → M/R.

9.4 Lemma. The following hold:

1. If M/R contains the bottom of M , then

(M/R) pt


⊗

γ∈Γ

τγ


 =



νR ◦ q : q ∈ SLat⊥ (∧)


⊗

γ∈Γ

τγ ,M






 .

2. If M/R is a subframe of M , then ∀A ∈ |Loc|, then

(M/R) pt (A) = {νR ◦ q : q ∈ Mpt (A)} .

Proof. Ad (1). For “⊂”, let r ∈ (M/R) pt
(⊗

γ∈Γ τγ

)
. Then M/R containing the bottom of M yields that ↪→

: M/R → M is a morphism in SLat⊥ (∧) ; and so r may be viewed as a member of SLat⊥ (∧)
(⊗

γ∈Γ τγ ,M
)

.

Further, since νR : M → M/R is the identity on M/R, then

νR ◦ r = r.

It follows that r ∈
{

νR ◦ q : q ∈ SLat⊥ (∧)
(⊗

γ∈Γ τγ ,M
)}

. Now let

r ∈ SLat⊥ (∧)


⊗

γ∈Γ

τγ ,M


 .

Then νR ◦ r preserves all finite meets and the empty join since r does and νR is a frame map. Now let
{aα}α∈A ⊂

⊗
γ∈Γ τγ . Then from 3.3.1(2) and the fact νR is a frame map, it follows:

νR

(
r

( ∨

α∈A
aα

))
= νR

( ∨

α∈A
r (aα)

)
=

∨

α∈A
νR (r (aα)) .

Now νR ◦ r is a frame map from
⊗

γ∈Γ τγ to M/R, hence is in (M/R) pt
(⊗

γ∈Γ τγ

)
, and so “⊃” holds.

Ad (2). Let A ∈ |Loc| . If r ∈ (M/R) pt
(⊗

γ∈Γ τγ

)
, then r is a frame map into M—M/R is a subframe

of M, and νR ◦ r = r; so that r ∈ Mpt (A). And the reverse inclusion follows since νR ◦ r is a composition
of frame maps. 2

9.5 Definition (join separation). Given a subframe M of frame L, a collection {(Xγ , τγ) : γ ∈ Γ} of
L-topological spaces is M -join-separated if M/R is a subframe of M , and L is (M/R)-spatial, where R is
defined as in 9.3 above; and this collection of L-topological spaces is join-separated if M -join separation
holds with M = L.

9.6 Proof of Theorem 1.8. Choosing M = L /R in 6.11 above, it suffices to show that

fM :


Mpt


⊗

γ∈Γ

τγ


 , (ΦM )→


⊗

γ∈Γ

τγ





 →


∏

γ∈Γ

Mpt (τγ) ,
⊗

γ∈Γ

(ΦM )→ (τγ)




is surjective with respect to frame mappings; and choosing M = L in 9.2 above, we therefore have that

fL :


Lpt


⊗

γ∈Γ

τγ


 , (ΦL)→


⊗

γ∈Γ

τγ





 →


∏

γ∈Γ

Lpt (τγ) ,
⊗

γ∈Γ

(ΦL)→ (τγ)




is surjective with respect to SLat⊥ (∧) morphisms: more precisely, given a tuple 〈qγ〉γ∈Γ ∈
∏

γ∈Γ Lpt (τγ) ,

there is a SLat⊥ (∧) morphism p such that as SLat⊥ (∧) morphisms, fL (p) = 〈qγ〉γ∈Γ. Now suppose we
start with 〈qγ〉γ∈Γ ∈

∏
γ∈Γ Mpt (τγ). Then since M is a subframe of L, it follows from 9.4(2) above that



Localic and Topological Products 41

〈qγ〉γ∈Γ ∈
∏

γ∈Γ Lpt (τγ) . Then there is a SLat⊥ (∧) morphism p̂ such that as set mappings, fL (p̂) = 〈qγ〉γ∈Γ.

Now using the nucleus νR : L → M/R ↪→ M, we have from 9.4(1) above that p ≡ νR ◦ p̂ ∈ Mpt
(⊗

γ∈Γ τγ

)
.

It follows that fM (p) = 〈pγ〉γ∈Γ by definition of fM ; and further, ∀γ ∈ Γ, we have that

pγ = p ◦ (πγ)←L
= (νR ◦ p̂) ◦ (πγ)←L
= νR ◦

(
p̂ ◦ (πγ)←L

)

= νR ◦ p̂γ (definition of p̂γ)
= νR ◦ qγ (fL (p̂) = 〈qγ〉γ∈Γ as set mappings)

= qγ (proof of 9.4).

Hence fM (p) = 〈qγ〉γ∈Γ , fM is now surjective with respect to frame mappings, and so fM is an L-
homeomorphism and Theorem 1.8 now follows from 6.11. 2

9.7 Proof of Theorem 1.9. Instantiate 6.11 by choosing M = L. Then the map

fL :


Lpt


⊗

γ∈Γ

τγ


 , (ΦL)→


⊗

γ∈Γ

τγ





 →


∏

γ∈Γ

Lpt (τγ) ,
⊗

γ∈Γ

(ΦL)→ (τγ)




is an L-embedding by 2.4.1(3). Apply 2.4.2(4) to finish the proof. 2
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